64 resultados para Two dimensional infrared spectroscopy correlation
Resumo:
This work presents an analysis of the assessment tools used by professors at the Universitat Politécnica de Catalunya to assess the generic competencies introduced in the Bachelor’s Degrees in Engineering. In order to conduct this study, a survey was designed and administered anonymously to a sample of the professors most receptive to educational innovation at their own university. All total, 80 professors responded to this survey, of whom 26% turned out to be members of the university’s own evaluation innovation group (https://www.upc.edu/rima/grups/grapa), GRAPA. This percentage represents 47% of the total GRAPA membership, meaning that nearly half of the professors most concerned about evaluation at the university chose to participate. The analysis of the variables carried out using the statistical program SPSS v19 shows that for practically 49% of those surveyed, rubrics are the tools most commonly used to assess generic competencies integrated in more specific ones. Of those surveyed, 60% use them either frequently or always. The most frequently evaluated generic competencies were teamwork (28%), problem solving (26%), effective oral and written communication (24%) and autonomous learning (13%), all of which constitute commonly recognized competencies in the engineering profession. A two-dimensional crosstabs analysis with SPSS v19 shows a significant correlation (Asymp. Sig. 0.001) between the type of tool used and the competencies assessed. However, no significant correlation was found between the type of assessment tool used and the type of subject, type of evaluation (formative or summative), frequency of feedback given to the students or the degree of student satisfaction, and thus none of these variables can be considered to have an influence on the kind of assessment tool used. In addition, the results also indicate that there are no significant differences between the instructors belonging to GRAPA and the rest of those surveyed
Resumo:
This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly( methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2O5-11Na2O (BV11) and 44.5CaO-44.5P2O5-6Na2O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG)techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt % for BV11sil glass and 0.93 6 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 22 and HPO4 22 in its structure after soaking for 30 days occurred. VC 2013 Wiley Periodicals,Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2013.
Resumo:
The properties of water can have a strong dependence on the confinement. Here, we consider a water monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the properties of the liquid are affected by the confinement. We show, by studying the response functions and the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the liquid-liquid critical point for L/h=~50, i.e. for a monolayer thickness that is small compared to its extension. This result is drastically different from what is reported for simple liquids, where the crossover occurs for , and is consistent with experimental results and atomistic simulations. We shed light on these findings showing that they are a consequence of the strong cooperativity and the low coordination number of the hydrogen bond network that characterizes water.
Resumo:
The process of hydrogen desorption from amorphous silicon (ɑ-Si) nanoparticles grown by plasmaenhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 °C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in ɑ-Si is about 1.15 eV. It is shown that this result is valid for ɑ-Si:H films, too