224 resultados para Statistical thermodynamics
Resumo:
We present a numerical study of classical particles diffusing on a solid surface. The particles motion is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface interaction is described by a periodic or a random two-dimensional potential. The model leads to a rich variety of different transport regimes, some of which correspond to anomalous diffusion such as has recently been observed in experiments and Monte Carlo simulations. We show that this anomalous behavior is controlled by the friction coefficient and stress that it emerges naturally in a system described by ordinary canonical Maxwell-Boltzmann statistics.
Resumo:
A Reply to the Comment by Jing-Dong Bao and Yan Zhou.
Resumo:
Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.
Resumo:
The dynamics of an interface separating the two coexistent phases of a binary system in the presence of external fluctuations in temperature is studied. An interfacial instability is obtained for an interface that would be stable in the absence of fluctuations or in the presence of internal fluctuations. Analytical stability analysis and numerical simulations are in accordance with an explanation of these effects in terms of a quenchlike instability induced by fluctuations.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type of motor are discussed.
Resumo:
We study the problem of front propagation in the presence of inertia. We extend the analytical approach for the overdamped problem to this case, and present numerical results to support our theoretical predictions. Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of these three regimes, and the existence of degenerate (¿quenched¿) solutions.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
We present numerical evidence and a theoretical analysis of the appearance of anticoherence resonance induced by noise, not predicted in former analysis of coherence resonance. We have found that this phenomenon occurs for very small values of the intensity of the noise acting on an excitable system, and we claim that this is a universal signature of a nonmonotonous relaxational behavior near its oscillatory regime. Moreover, we demonstrate that this new phenomenon is totally compatible with the standard situation of coherence resonance appearing at intermediate values of noise intensity.
Resumo:
The effect of external fluctuations on the formation of spatial patterns is analyzed by means of a stochastic Swift-Hohenberg model with multiplicative space-correlated noise. Numerical simulations in two dimensions show a shift of the bifurcation point controlled by the intensity of the multiplicative noise. This shift takes place in the ordering direction (i.e., produces patterns), but its magnitude decreases with that of the noise correlation length. Analytical arguments are presented to explain these facts.
Resumo:
A simple model is introduced that exhibits a noise-induced front propagation and where the noise enters multiplicatively. The invasion of the unstable state is studied, both theoretically and numerically. A good agreement is obtained for the mean value of the order parameter and the mean front velocity using the analytical predictions of the linear marginal stability analysis.
Resumo:
We study the interaction between two independent nonlinear oscillators competing through a neutral excitable element. The first oscillator, completely deterministic, acts as a normal pacemaker sending pulses to the neutral element which fires when it is excited by these pulses. The second oscillator, endowed with some randomness, though unable to make the excitable element to beat, leads to the occasional suppression of its firing. The missing beats or errors are registered and their statistics analyzed in terms of the noise intensity and the periods of both oscillators. This study is inspired in some complex rhythms such as a particular class of heart arrhythmia.
Resumo:
The effects of a disordered medium in the growth of unstable interfaces are studied by means of two local models with multiplicative and additive quenched disorder, respectively. For short times and large pushing the multiplicative quenched disorder is equivalent to a time-dependent noise. In this regime, the linear dispersion relation contains a destabilizing contribution introduced by the noise. For long times, the interface always gets pinned. We model the systematics of the pinned shapes by means of an effective nonlinear model. These results show good agreement with numerical simulations. For the additive noise we find numerically that a depinning transition occurs.