66 resultados para Predictive Monitoring
Resumo:
In robotics, having a 3D representation of the environment where a robot is working can be very useful. In real-life scenarios, this environment is constantly changing for example by human interaction, external agents or by the robot itself. Thus, the representation needs to be constantly updated and extended to account for these dynamic scene changes. In this work we face the problem of representing the scene where a robot is acting. Moreover, we ought to improve this representation by reusing the information obtained in previous scenes. Our goal is to build a method to represent a scene and to update it while changes are produced. In order to achieve that, different aspects of computer vision such as space representation or feature tracking are discussed
Resumo:
Our efforts are directed towards the understanding of the coscheduling mechanism in a NOW system when a parallel job is executed jointly with local workloads, balancing parallel performance against the local interactive response. Explicit and implicit coscheduling techniques in a PVM-Linux NOW (or cluster) have been implemented. Furthermore, dynamic coscheduling remains an open question when parallel jobs are executed in a non-dedicated Cluster. A basis model for dynamic coscheduling in Cluster systems is presented in this paper. Also, one dynamic coscheduling algorithm for this model is proposed. The applicability of this algorithm has been proved and its performance analyzed by simulation. Finally, a new tool (named Monito) for monitoring the different queues of messages in such an environments is presented. The main aim of implementing this facility is to provide a mean of capturing the bottlenecks and overheads of the communication system in a PVM-Linux cluster.
Resumo:
The Spanish Government has established post-market environmental monitoring (PMEM) as mandatory for genetically modified (GM) crop varieties cultivated in Spain. In order to comply with this regulation, effects of Bt maize varieties derived from the event MON810 on the predatory fauna were monitored for two years in northeast and central Spain. The study was carried out with a randomized block design in maize fields of 3-4 ha on which the abundance of plant-dwelling predators and the activity-density of soil-dwelling predators in Bt vs. non-Bt near-isogenic varieties were compared. To this end, the plots were sampled by visual inspection of a certain number of plants and pitfall traps 6 or 7 times throughout two seasons. No significant differences in predator densities on plants were found between Bt and non-Bt varieties. In the pitfall traps, significant differences between the two types of maize were found only in Staphylinidae, in which trap catches in non-Bt maize were higher than in Bt maize in central Spain. Based on the statistical power of the assays, surrogate arthropods for PMEM purposes are proposed; Orius spp. and Araneae for visual sampling and Carabidae, Araneae, and Staphylinidae for pitfall trapping. The other predator groups recorded in the study, Nabis sp. and Coccinellidae in visual sampling and Dermaptera in pitfall trapping, gave very poor power results. To help to establish a standardized protocol for PMEM of genetically modified crops, the effect-detecting capacity with a power of 0.8 of each predator group is given.
Resumo:
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
Resumo:
Dynamic adaptations of one"s behavior by means of performance monitoring are a central function of the human executive system, that underlies considerable interindividual variation. Converging evidence from electrophysiological and neuroimaging studies in both animals and humans hints atthe importance ofthe dopaminergic system forthe regulation of performance monitoring. Here, we studied the impact of two polymorphisms affecting dopaminergic functioning in the prefrontal cortex [catechol-O-methyltransferase (COMT) Val108/158Met and dopamine D4 receptor (DRD4) single-nucleotide polymorphism (SNP)-521] on neurophysiological correlates of performance monitoring. We applied a modified version of a standard flanker task with an embedded stop-signal task to tap into the different functions involved, particularly error monitoring, conflict detection and inhibitory processes. Participants homozygous for the DRD4 T allele produced an increased error-related negativity after both choice errors and failed inhibitions compared with C-homozygotes. This was associated with pronounced compensatory behavior reflected in higher post-error slowing. No group differences were seen in the incompatibility N2, suggesting distinct effects of the DRD4 polymorphism on error monitoring processes. Additionally, participants homozygous for the COMTVal allele, with a thereby diminished prefrontal dopaminergic level, revealed increased prefrontal processing related to inhibitory functions, reflected in the enhanced stop-signal-related components N2 and P3a. The results extend previous findings from mainly behavioral and neuroimaging data on the relationship between dopaminergic genes and executive functions and present possible underlying mechanisms for the previously suggested association between these dopaminergic polymorphisms and psychiatric disorders as schizophrenia or attention deficit hyperactivity disorder.
Resumo:
Water is vital to humans and each of us needs at least 1.5 L of safe water a day to drink. Beginning as long ago as 1958 the World Health Organization (WHO) has published guidelines to help ensure water is safe to drink. Focused from the start on monitoring radionuclides in water, and continually cooperating with WHO, the International Standardization Organization (ISO) has been publishing standards on radioactivity test methods since 1978. As reliable, comparable and"fit for purpose" results are an essential requirement for any public health decision based on radioactivity measurements, international standards of tested and validated radionuclide test methods are an important tool for production of such measurements. This paper presents the ISO standards already published that could be used as normative references by testing laboratories in charge of radioactivity monitoring of drinking water as well as those currently under drafting and the prospect of standardized fast test methods in response to a nuclear accident.