76 resultados para Parentage Order
Resumo:
Amorphous thin films of Fe/Sm, prepared by evaporation methods, have been magnetically characterized and the results were interpreted in terms of the random magnets theory. The samples behave as 2D and 3D random magnets depending on the total thickness of the film. From our data the existence of orientational order, which greatly influences the magnetic behavior of the films, is also clear.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.
Resumo:
The character of the electronic ground state of La0.5Ca0.5MnO3 has been addressed with quantum chemical calculations on large embedded clusters. We find a charge ordered state for the crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)] and Zener polaron formation in the crystal structure with equivalent Mn sites proposed by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205 (2002)]. Important O to Mn charge transfer effects are observed for the Zener polaron.
Resumo:
Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.
Resumo:
The Upper Limestone Member of the Corones Formation of the Spanish Pyrenees consists of various units (Lower and Upper Foraminifera Units, Shale Unit, Cherty-ostracode Unit, Ostracode Unit and Chara-ostracode Unit) and offers strong facies and lateral thickness (20 to 80 m) variations. Detailed facies analyses, fifth-order cycles and organic geochemical determinations in the central domain of the Corones platform carbonates (Cherty-ostracode Unit), lower Eocene in age, were carried out to establish a case of close relationship between variations in organic matter productivity and cyclicity with annual period. The Cherty-ostracode Unit displays a continuous and pervasive fifth-order cyclicity, represented by 5 cycles. Each cycle consists of a lower part (mollusc facies) and an upper part (laminated ostracode facies). The calculated fifth-order cycle period ranges from about 17,000 to 28,000 years, which falls within the Milankovitch Band. Variations in organic matter content related to these carbonate cycles have been established. The lower mollusc facies members show a low organic carbon content and Hydrogen Index (HI) below 0.6% in weight and 261, respectively. By contrast, the upper laminated ostracode facies members show high organic carbon contents (up to 2% in weight) and high HI (between 164 and 373), and are also characterized by important silicification processes (the content in chert is up to 30%). The organic geochemistry resulting from these organic rich levels reflects a contribution of algal marine input.
Resumo:
What is the use of representing in performance the image of the cave from book VII of Plato’s Republic? Josep Palau i Fabre considers that in Plato’s dialogues the speakers are mere instruments at the service of his dialectical purpose. The aim of this article is to show how, by turning the myth into a tragedy and relying on Heraclitus’s conflict or war of opposites, the playwright succeeds in favouring a sort of thought which is not one-sided or univocal. On the contrary, in Palau i Fabre’s La Caverna, the tragic hero, the released prisoner transformed by the light of Reality and finally killed by his “cavemates” –after having been imprisoned again and having tried to rescue them from their ignorance or shadows– still leaves them his powerful experience of the agonistikós thought, which might bear fruit in their life to come.
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
The objective of this paper is to introduce a fourth-order cost function of the displaced frame difference (DFD) capable of estimatingmotion even for small regions or blocks. Using higher than second-orderstatistics is appropriate in case the image sequence is severely corruptedby additive Gaussian noise. Some results are presented and compared to those obtained from the mean kurtosis and the mean square error of the DFD.
Resumo:
The Wigner higher order moment spectra (WHOS)are defined as extensions of the Wigner-Ville distribution (WD)to higher order moment spectra domains. A general class oftime-frequency higher order moment spectra is also defined interms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to theproperties of WHOS which are, in fact, extensions of the properties of the WD. Discrete time and frequency Wigner higherorder moment spectra (DTF-WHOS) distributions are introduced for signal processing applications and are shown to beimplemented with two FFT-based algorithms. One applicationis presented where the Wigner bispectrum (WB), which is aWHOS in the third-order moment domain, is utilized for thedetection of transient signals embedded in noise. The WB iscompared with the WD in terms of simulation examples andanalysis of real sonar data. It is shown that better detectionschemes can be derived, in low signal-to-noise ratio, when theWB is applied.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
In this article, the fusion of a stochastic metaheuristic as Simulated Annealing (SA) with classical criteria for convergence of Blind Separation of Sources (BSS), is shown. Although the topic of BSS, by means of various techniques, including ICA, PCA, and neural networks, has been amply discussed in the literature, to date the possibility of using simulated annealing algorithms has not been seriously explored. From experimental results, this paper demonstrates the possible benefits offered by SA in combination with high order statistical and mutual information criteria for BSS, such as robustness against local minima and a high degree of flexibility in the energy function.
Resumo:
The possible coexistence of ferromagnetism and charge/orbital order in Bi3/4Sr1/4MnO3 has been investigated. The manganite Bi0.75Sr0.25MnO3, with commensurate charge balance, undergoes an electronic transition at TCO~600 K that produces a longrange modulation with double periodicity along a and c axis, and unusual anisotropic evolution of the lattice parameters. The previously proposed ferromagnetic properties of this new ordered phase were studied by magnetometry and diffraction techniques. In zero field the magnetic structure is globally antiferromagnetic, ruling out the apparition of spontaneous ferromagnetism. However, the application of magnetic fields produces a continuous progressive canting of the moments, inducing a ferromagnetic phase even for relatively small fields (H<<1 T). Application of pulsed high fields produces a remarkable and reversible spin polarization (under 30 T, the ferromagnetic moment is ~3 ¿B/Mn, without any sign of charge order melting). The coexistence of ferromagnetism and charge order at low and very-high fields is a remarkable property of this system.
Resumo:
Stochastic learning processes for a specific feature detector are studied. This technique is applied to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based on the ssT-block¿ssC-block problem. Our system proves to be capable of achieving perfect generalization, after presenting finite numbers of examples, by undergoing a phase transition. The corresponding annealed theory, which involves the Ising model under external field, shows good agreement with Monte Carlo simulations.