66 resultados para Parallel hyperspectral unmixing method
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
The Person Trade-Off (PTO) is a methodology aimed at measuring thesocial value of health states. The rest of methodologies would measure individualutility and would be less appropriate for taking resource allocation decisions.However few studies have been conducted to test the validity of the method.We present a pilot study with this objective. The study is based on theresult of interviews to 30 undergraduate students in Economics. We judgethe validity of PTO answers by their adequacy to three hypothesis of rationality.First, we show that, given certain rationality assumptions, PTO answersshould be predicted from answers to Standard Gamble questions. This firsthypothesis is not verified. The second hypothesis is that PTO answersshould not vary with different frames of equivalent PTO questions. Thissecond hypothesis is also not verified. Our third hypothesis is that PTOvalues should predict social preferences for allocating resources betweenpatients. This hypothesis is verified. The evidence on the validity of themethod is then conflicting.
Resumo:
We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.
Resumo:
This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.
Resumo:
In this paper I explore the issue of nonlinearity (both in the datageneration process and in the functional form that establishes therelationship between the parameters and the data) regarding the poorperformance of the Generalized Method of Moments (GMM) in small samples.To this purpose I build a sequence of models starting with a simple linearmodel and enlarging it progressively until I approximate a standard (nonlinear)neoclassical growth model. I then use simulation techniques to find the smallsample distribution of the GMM estimators in each of the models.