74 resultados para One-dimensional


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the dynamics of a F=1 spinor Bose-Einstein condensate of 87Rb atoms confined in a quasi-one-dimensional trap both at zero and at finite temperature. At zero temperature, we observe coherent oscillations between populations of the various spin components and the formation of multiple domains in the condensate. We study also finite temperature effects in the spin dynamics taking into account the phase fluctuations in the Bogoliubov-de Gennes framework. At finite T, despite complex multidomain formation in the condensate, population equipartition occurs. The length scale of these spin domains seems to be determined intrinsically by nonlinear interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the spin dynamics of quasi-one-dimensional F=1 condensates both at zero and finite temperatures for arbitrary initial spin configurations. The rich dynamical evolution exhibited by these nonlinear systems is explained by surprisingly simple principles: minimization of energy at zero temperature and maximization of entropy at high temperature. Our analytical results for the homogeneous case are corroborated by numerical simulations for confined condensates in a wide variety of initial conditions. These predictions compare qualitatively well with recent experimental observations and can, therefore, serve as a guidance for ongoing experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that transport in the presence of entropic barriers exhibits peculiar characteristics which makes it distinctly different from that occurring through energy barriers. The constrained dynamics yields a scaling regime for the particle current and the diffusion coefficient in terms of the ratio between the work done to the particles and available thermal energy. This interesting property, genuine to the entropic nature of the barriers, can be utilized to effectively control transport through quasi-one-dimensional structures in which irregularities or tortuosity of the boundaries cause entropic effects. The accuracy of the kinetic description has been corroborated by simulations. Applications to different dynamic situations involving entropic barriers are outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation, which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one-dimensional diffusion. The validity of this approximation, based on the assumption of an instantaneous equilibration of the particle distribution in the cross section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur when an unstable periodic orbit collides with the chaotic attractor. We present here numerical evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh¿Rose model of a neuron, at the transition point between the bursting and spiking dynamics, which are two different dynamic behaviors that this system is able to present. Moreover, besides the change in attractor size, other significant properties of the system undergoing the transitions do change in a relevant qualitative way. The mechanism for such transition is understood in terms of a simple one-dimensional map whose dynamics undergoes a crossover between two different universal behaviors

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizably lower number of fermions in the presence of a deep optical lattice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive a one dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of of a symmetric binary electrolyte in channels whose section is of nanometric section and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs di fusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non trivial fashion. We consider two kinds of non uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one and three-dimensional solutions of the electrokinetic equations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we show how a nonlinear preprocessing of speech signal -with high noise- based on morphological filters improves the performance of robust algorithms for pitch tracking (RAPT). This result happens for a very simple morphological filter. More sophisticated ones could even improve such results. Mathematical morphology is widely used in image processing and has a great amount of applications. Almost all its formulations derived in the two-dimensional framework are easily reformulated to be adapted to one-dimensional context

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitjançant imatges estereoscòpiques es poden detectar la posició respecte de la càmera dels objectes que apareixen en una escena. A partir de les diferències entre les imatges captades pels dos objectius es pot determinar la profunditat dels objectes. Existeixen diversitat de tècniques de visió artificial que permeten calcular la localització dels objectes, habitualment amb l’objectiu de reconstruir l’escena en 3D. Aquestes tècniques necessiten una gran càrrega computacional, ja que utilitzen mètodes de comparació bidimensionals, i per tant, no es poden utilitzar per aplicacions en temps real. En aquest treball proposem un nou mètode d’anàlisi de les imatges estereoscòpiques que ens permeti obtenir la profunditat dels objectes d’una escena amb uns resultats acceptables. Aquest nou mètode es basa en transformar la informació bidimensional de la imatge en una informació unidimensional per tal de poder fer la comparació de les imatges amb un baix cost computacional, i dels resultats de la comparació extreure’n la profunditat dels objectes dins l’escena. Això ha de permetre, per exemple, que aquest mètode es pugui implementar en un dispositiu autònom i li permeti realitzar operacions de guiatge a través d’espais interiors i exteriors.