63 resultados para Numerical-solution
Resumo:
We characterize the Schatten class membership of the canonical solution operator to $\overline{\partial}$ acting on $L^2(e^{-2\phi})$, where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. The obtained characterization is in terms of $\Delta\phi$. As part of our approach, we study Hankel operators with anti-analytic symbols acting on the corresponding Fock space of entire functions in $L^2(e^{-2\phi})$
Resumo:
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.
Resumo:
Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue¿glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.