62 resultados para Matrix of complex negotiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One main assumption in the theory of rough sets applied to information tables is that the elements that exhibit the same information are indiscernible (similar) and form blocks that can be understood as elementary granules of knowledge about the universe. We propose a variant of this concept defining a measure of similarity between the elements of the universe in order to consider that two objects can be indiscernible even though they do not share all the attribute values because the knowledge is partial or uncertain. The set of similarities define a matrix of a fuzzy relation satisfying reflexivity and symmetry but transitivity thus a partition of the universe is not attained. This problem can be solved calculating its transitive closure what ensure a partition for each level belonging to the unit interval [0,1]. This procedure allows generalizing the theory of rough sets depending on the minimum level of similarity accepted. This new point of view increases the rough character of the data because increases the set of indiscernible objects. Finally, we apply our results to a not real application to be capable to remark the differences and the improvements between this methodology and the classical one

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features