169 resultados para Magnetic fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields. The case of continuous polydispersity thereby becomes tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this, by a perturbation theory for narrow distributions, with the reversible work for changing the size of one particle in a monodisperse reference fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CoFe-Ag-Cu granular films, prepared by rf sputtering, displayed magnetic domain microstructures for ferromagnetic concentrations above about 32% at, and below the percolation threshold. All samples have a fcc structure with an (111) texture perpendicular to the film plane. Magnetic force microscopy (MFM) showed a variety of magnetic domain microstructures, extremely sensitive to the magnetic history of the sample, which arise from the balance of the ferromagnetic exchange, the dipolar interactions and perpendicular magnetocrystalline anisotropy, MFM images indicate that in virgin samples, magnetic bubble domains with an out-of-plane component of the magnetization are surrounded by a quasicontinuous background of opposite magnetization domains. The application of a magnetic field in different geometries drastically modifies the microstructure of the system in the remanent state: i) for an in-plane field, the MFM images show that most of the magnetic moments are aligned along the film plane, ii) for an out-of-plane field, the MFM signal increases about one order of magnitude, and out-of-plane striped domains with alternating up and down magnetization are stabilized. Numerical simulations show that a variety of metastable domain structures (similar to those observed experimentally) can be reached, depending on magnetic history, in systems with competing perpendicular anisotropy, exchange and dipolar interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute nonequilibrium correlation functions about the stationary state in which the fluid moves as a consequence of tangential stresses on the liquid surface, related to a varying surface tension (thermocapillary motion). The nature of the stationary state makes it necessary to take into account that the system is finite. We then extend a previous analysis on fluctuations about simple stationary states to include some effects related to the finite size of the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric magnetization reversal is an unusual phenomenon in antiferromagnet/ferromagnet (AF/FM) exchange biased bilayers. We investigated this phenomenon in a simple model system experimentally and by simulation assuming inhomogeneously distributed interfacial AF moments. The results suggest that the observed asymmetry originates from the intrinsic broken symmetry of the system, which results in local incomplete domain walls parallel to the interface in reversal to negative saturation of the FM. The magneto-optical Kerr effect unambiguously confirms such an asymmetric reversal and a depth-dependent FM domain wall in accord with the magnetometry and simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonexponential relaxation occurring in complex dynamics manifested in a wide variety of systems is analyzed through a simple model of diffusion in phase space. It is found that the inability of the system to find its equilibrium state in any time scale becomes apparent in an effective temperature field, which leads to a hierarchy of relaxation times responsible for the slow relaxation phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a magnetic dipole in a shear flow under the action of an oscillating magnetic field displays stochastic resonance in the linear response regime. To this end, we compute the classical quantifiers of stochastic resonance, i.e., the signal to noise ratio, the escape time distribution, and the mean first passage time. We also discuss the limitations and role of the linear response theory in its applications to the theory of stochastic resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a dispersion of monodomain ferromagnetic particles in a solid phase exhibits stochastic resonance when a driven linearly polarized magnetic field is applied. By using an adiabatic approach, we calculate the power spectrum, the distribution of residence times, and the mean first passage time. The behavior of these quantities is similar to the behavior of corresponding quantities in other systems where stochastic resonance has also been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a phenomenological model which simulates very well the mag¿ netic relaxation behavior experimentally observed in small magnetic grains and single domain particles. In this model, the occurrence of quantum tunneling of magnetization below a certain temperature is taken into account. Experimental results for different materials are presented to illustrate the most important behavior deduced from our model