108 resultados para MOLECULAR MAGNETIC-MATERIALS
Resumo:
It is found that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. A strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing indirect evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between the Fabry-Perot superconducting mirrors.
Resumo:
We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S=12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at Tc=0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.
Resumo:
Based on experimental observations of modulated magnetic patterns in a Co0.5Ni0.205Ga0.295 alloy, we propose a model to describe a (purely) magnetic tweed and a magnetoelastic tweed. The former arises above the Curie (or Nel) temperature due to magnetic disorder. The latter results from compositional fluctuations coupling to strain and then to magnetism through the magnetoelastic interaction above the structural transition temperature. We discuss the origin of purely magnetic and magnetoelastic precursor modulations and their experimental thermodynamic signatures.
Resumo:
Estudi elaborat a partir d’una estada a l’ Ecole Nationale Supérieure de Chimie de Montpellier, França, durant 2006. S’han sintetitzat materials híbrids orgànico-inorgànics mitjançant el procés sol-gel i altres estratègies sintètiques. En alguns casos, s’ha intentat estructurar aquests materials, ja sigui per autoestructuració o per mitjà de tensioactius. Com a catalitzadors de les reaccions d'hidròlisi i policondensació s’han utilitzat àcids, bases i fluorurs. Els materials obtinguts s’han caracteritzat mitjançant diferents tècniques: BET (Brunauer-Emmett-Teller), TEM (microscopia electrònica de transmissió), SEM (microscòpia electrònica de rastreig), raigs X en pols , IR i RMN (ressonància magnètica nuclear) en estat sòlid. Amb aquests materials es pretén preparar catalitzadors heterogenis de Pd per reaccions d’acoblament creuat, i de Ru per reaccions de metàtesi. També s’han sintetitzat sals d'imidazoli amb cadenes hidrocarbonades llargues amb l'objectiu de preparar gels de sílice amb aquestes molècules atrapades dins la matriu inorgànica. Aquests materials s’utilitzaran com a organocatalitzadors i també es prepararan els corresponents catalitzadors de Pd per reaccions de Heck, Suzuki i Sonogashira. Les sals d’imidazoli s’han utilitzat com a tensioactius en la preparació de gels de sílice estructurats. Aquestes molècules han resultat ser cristalls líquids i s’han caracteritzar mitjançant DSC (differential scanning calorimetry), microscopia òptica i raigs X.
Resumo:
Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50 meV/H atoms , indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A),360 (A'), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linea relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si-H bond-dissociation energies have been determined to be E (Si-H)0=3.14 (A), 3.19 (A'), and 3.28 eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si-H bond breaking [0.97 (A), 1.05 (A'), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10 eV for the isolated dangling bond in the bulk. After Si-H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600 meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusion
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 ¿m magnetite beads obtaining forces up to ~2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.
Resumo:
We find that the use of V(100) buffer layers on MgO(001) substrates for the epitaxy of FePd binary alloys yields to the formation at intermediate and high deposition temperatures of a FePd¿FeV mixed phase due to strong V diffusion accompanied by a loss of layer continuity and strong increase of its mosaic spread. Contrary to what is usually found in this kind of systems, these mixed phase structures exhibit perpendicular magnetic anisotropy (PMA) which is not correlated with the presence of chemical order, almost totally absent in all the fabricated structures, even at deposition temperatures where it is usually obtained with other buffer layers. Thus the observed PMA can be ascribed to the V interdiffusion and the formation of a FeV alloy, being the global sample saturation magnetization also reduced.
Resumo:
The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.
Resumo:
Epitaxial Fe/MgO heterostructures have been grown on Si(001) by a combination of sputtering and laser ablation deposition techniques. The growth of MgO on Si(001) is mainly determined by the nature of the interface, with large lattice mismatch and the presence of an amorphous layer of unclear origin. Reflection high energy electron diffraction patterns of this MgO buffer layer are characteristic of an epitaxial, but disordered, structure. The structural quality of subsequent Fe and MgO layers continuously improves due to the better lattice match and the burial of defects. A weak uniaxial in-plane magnetic anisotropy is found superimposed on the expected cubic biaxial anisotropy. This additional anisotropy, of interfacial nature and often found in Fe/MgO and Fe/MgO/GaAs(001) systems, is less intense here due to the poorer MgO/Si interface quality compared with that of other systems. From the evolution of the anisotropy field with film thickness, magnetic anisotropy is also found to depend on the crystal quality. Kerr measurements of a Fe/MgO multilayered structure grown on Si show two different switching fields, suggesting magnetic coupling of two of the three Fe layers. Nevertheless, due to the little sensitivity to the bottom Fe film, independent switching of the three layers cannot be ruled out.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.