386 resultados para MINISTERIO
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations ofcompositions. In other words, they investigated compositions of compositions, wherethe mixing composition follows a logistic Normal distribution (or a perturbationprocess) and the compositions being mixed follow a logistic Normal distribution. Inthis paper, I investigate the extension to situations where the mixing compositionvaries with a number of dimensions. Examples would be where the mixingproportions vary with time or distance or a combination of the two. Practicalsituations include a river where the mixing proportions vary along the river, or acrossa lake and possibly with a time trend. This is illustrated with a dataset similar to thatused in the Aitchison and Bacon-Shone paper, which looked at how pollution in aloch depended on the pollution in the three rivers that feed the loch. Here, I explicitlymodel the variation in the linear combination across the loch, assuming that the meanof the logistic Normal distribution depends on the river flows and relative distancefrom the source origins
Resumo:
The literature related to skew–normal distributions has grown rapidly in recent yearsbut at the moment few applications concern the description of natural phenomena withthis type of probability models, as well as the interpretation of their parameters. Theskew–normal distributions family represents an extension of the normal family to whicha parameter (λ) has been added to regulate the skewness. The development of this theoreticalfield has followed the general tendency in Statistics towards more flexible methodsto represent features of the data, as adequately as possible, and to reduce unrealisticassumptions as the normality that underlies most methods of univariate and multivariateanalysis. In this paper an investigation on the shape of the frequency distribution of thelogratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells,has been performed. Samples have been collected around the active center of Vulcanoisland (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals ofabout six months. Data of the logratio have been tentatively modeled by evaluating theperformance of the skew–normal model for each well. Values of the λ parameter havebeen compared by considering temperature and spatial position of the sampling points.Preliminary results indicate that changes in λ values can be related to the nature ofenvironmental processes affecting the data
Resumo:
There are two principal chemical concepts that are important for studying the naturalenvironment. The first one is thermodynamics, which describes whether a system is atequilibrium or can spontaneously change by chemical reactions. The second main conceptis how fast chemical reactions (kinetics or rate of chemical change) take place wheneverthey start. In this work we examine a natural system in which both thermodynamics andkinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 insuperficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system inwhich natural and antrophic effects both contribute to highly modify the chemical compositionof water. Thermodynamical modelling based on the reduction-oxidation reactionsinvolving the passage NH+4 -& NO−2 -& NO−3 in equilibrium conditions has allowed todetermine the Eh redox potential values able to characterise the state of each sample and,consequently, of the fluid environment from which it was drawn. Just as pH expressesthe concentration of H+ in solution, redox potential is used to express the tendency of anenvironment to receive or supply electrons. In this context, oxic environments, as thoseof river systems, are said to have a high redox potential because O2 is available as anelectron acceptor.Principles of thermodynamics and chemical kinetics allow to obtain a model that oftendoes not completely describe the reality of natural systems. Chemical reactions may indeedfail to achieve equilibrium because the products escape from the site of the rectionor because reactions involving the trasformation are very slow, so that non-equilibriumconditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understoodcatalytic effects or to surface effects, while variables as concentration (a largenumber of chemical species can coexist and interact concurrently), temperature and pressurecan have large gradients in natural systems. By taking into account this, data of 91water samples have been modelled by using statistical methodologies for compositionaldata. The application of log–contrast analysis has allowed to obtain statistical parametersto be correlated with the calculated Eh values. In this way, natural conditions in whichchemical equilibrium is hypothesised, as well as underlying fast reactions, are comparedwith those described by a stochastic approach
Resumo:
At CoDaWork'03 we presented work on the analysis of archaeological glass composi-tional data. Such data typically consist of geochemical compositions involving 10-12variables and approximates completely compositional data if the main component, sil-ica, is included. We suggested that what has been termed `crude' principal componentanalysis (PCA) of standardized data often identi ed interpretable pattern in the datamore readily than analyses based on log-ratio transformed data (LRA). The funda-mental problem is that, in LRA, minor oxides with high relative variation, that maynot be structure carrying, can dominate an analysis and obscure pattern associatedwith variables present at higher absolute levels. We investigate this further using sub-compositional data relating to archaeological glasses found on Israeli sites. A simplemodel for glass-making is that it is based on a `recipe' consisting of two `ingredients',sand and a source of soda. Our analysis focuses on the sub-composition of componentsassociated with the sand source. A `crude' PCA of standardized data shows two clearcompositional groups that can be interpreted in terms of di erent recipes being used atdi erent periods, reected in absolute di erences in the composition. LRA analysis canbe undertaken either by normalizing the data or de ning a `residual'. In either case,after some `tuning', these groups are recovered. The results from the normalized LRAare di erently interpreted as showing that the source of sand used to make the glassdi ered. These results are complementary. One relates to the recipe used. The otherrelates to the composition (and presumed sources) of one of the ingredients. It seemsto be axiomatic in some expositions of LRA that statistical analysis of compositionaldata should focus on relative variation via the use of ratios. Our analysis suggests thatabsolute di erences can also be informative
Resumo:
The classical statistical study of the wind speed in the atmospheric surface layer is madegenerally from the analysis of the three habitual components that perform the wind data,that is, the component W-E, the component S-N and the vertical component,considering these components independent.When the goal of the study of these data is the Aeolian energy, so is when wind isstudied from an energetic point of view and the squares of wind components can beconsidered as compositional variables. To do so, each component has to be divided bythe module of the corresponding vector.In this work the theoretical analysis of the components of the wind as compositionaldata is presented and also the conclusions that can be obtained from the point of view ofthe practical applications as well as those that can be derived from the application ofthis technique in different conditions of weather
Resumo:
Precision of released figures is not only an important quality feature of official statistics,it is also essential for a good understanding of the data. In this paper we show a casestudy of how precision could be conveyed if the multivariate nature of data has to betaken into account. In the official release of the Swiss earnings structure survey, the totalsalary is broken down into several wage components. We follow Aitchison's approachfor the analysis of compositional data, which is based on logratios of components. Wefirst present diferent multivariate analyses of the compositional data whereby the wagecomponents are broken down by economic activity classes. Then we propose a numberof ways to assess precision
Resumo:
Two contrasting case studies of sediment and detrital mineral composition are investigated in order to outline interactions between chemical composition and grain size. Modern glacial sediments exhibit a strong dependence of the two parameters due to the preferential enrichment of mafic minerals, especially biotite, in the fine-grained fractions. On the other hand, the composition of detrital heavy minerals (here: rutile) appears to be not systematically related to grain-size, but is strongly controlled by location, i.e. the petrology of the source rocks of detrital grains. This supports the use of rutile as a well-suited tracer mineral for provenance studies. The results further suggest that (i) interpretations derived from whole-rock sediment geochemistry should be flanked by grain-size observations, and (ii) a more sound statistical evaluation of these interactions require the development of new tailor-made statistical tools to deal with such so-called two-way compositions
Resumo:
A study of tin deposits from Priamurye (Russia) is performed to analyze the differencesbetween them based on their origin and also on commercial criteria. A particularanalysis based on their vertical zonality is also given for samples from Solnechnoedeposit. All the statistical analysis are made on the subcomposition formed by seventrace elements in cassiterite (In, Sc, Be, W, Nb, Ti and V) using the Aitchison’methodology of analysis of compositional data
Resumo:
Low concentrations of elements in geochemical analyses have the peculiarity of beingcompositional data and, for a given level of significance, are likely to be beyond thecapabilities of laboratories to distinguish between minute concentrations and completeabsence, thus preventing laboratories from reporting extremely low concentrations of theanalyte. Instead, what is reported is the detection limit, which is the minimumconcentration that conclusively differentiates between presence and absence of theelement. A spatially distributed exhaustive sample is employed in this study to generateunbiased sub-samples, which are further censored to observe the effect that differentdetection limits and sample sizes have on the inference of population distributionsstarting from geochemical analyses having specimens below detection limit (nondetects).The isometric logratio transformation is used to convert the compositional data in thesimplex to samples in real space, thus allowing the practitioner to properly borrow fromthe large source of statistical techniques valid only in real space. The bootstrap method isused to numerically investigate the reliability of inferring several distributionalparameters employing different forms of imputation for the censored data. The casestudy illustrates that, in general, best results are obtained when imputations are madeusing the distribution best fitting the readings above detection limit and exposes theproblems of other more widely used practices. When the sample is spatially correlated, itis necessary to combine the bootstrap with stochastic simulation
Resumo:
Isotopic data are currently becoming an important source of information regardingsources, evolution and mixing processes of water in hydrogeologic systems. However, itis not clear how to treat with statistics the geochemical data and the isotopic datatogether. We propose to introduce the isotopic information as new parts, and applycompositional data analysis with the resulting increased composition. Results areequivalent to downscale the classical isotopic delta variables, because they are alreadyrelative (as needed in the compositional framework) and isotopic variations are almostalways very small. This methodology is illustrated and tested with the study of theLlobregat River Basin (Barcelona, NE Spain), where it is shown that, though verysmall, isotopic variations comp lement geochemical principal components, and help inthe better identification of pollution sources
Resumo:
This paper examines a dataset which is modeled well by thePoisson-Log Normal process and by this process mixed with LogNormal data, which are both turned into compositions. Thisgenerates compositional data that has zeros without any need forconditional models or assuming that there is missing or censoreddata that needs adjustment. It also enables us to model dependenceon covariates and within the composition
Resumo:
The statistical analysis of compositional data should be treated using logratios of parts,which are difficult to use correctly in standard statistical packages. For this reason afreeware package, named CoDaPack was created. This software implements most of thebasic statistical methods suitable for compositional data.In this paper we describe the new version of the package that now is calledCoDaPack3D. It is developed in Visual Basic for applications (associated with Excel©),Visual Basic and Open GL, and it is oriented towards users with a minimum knowledgeof computers with the aim at being simple and easy to use.This new version includes new graphical output in 2D and 3D. These outputs could bezoomed and, in 3D, rotated. Also a customization menu is included and outputs couldbe saved in jpeg format. Also this new version includes an interactive help and alldialog windows have been improved in order to facilitate its use.To use CoDaPack one has to access Excel© and introduce the data in a standardspreadsheet. These should be organized as a matrix where Excel© rows correspond tothe observations and columns to the parts. The user executes macros that returnnumerical or graphical results. There are two kinds of numerical results: new variablesand descriptive statistics, and both appear on the same sheet. Graphical output appearsin independent windows. In the present version there are 8 menus, with a total of 38submenus which, after some dialogue, directly call the corresponding macro. Thedialogues ask the user to input variables and further parameters needed, as well aswhere to put these results. The web site http://ima.udg.es/CoDaPack contains thisfreeware package and only Microsoft Excel© under Microsoft Windows© is required torun the software.Kew words: Compositional data Analysis, Software
Resumo:
The R-package “compositions”is a tool for advanced compositional analysis. Its basicfunctionality has seen some conceptual improvement, containing now some facilitiesto work with and represent ilr bases built from balances, and an elaborated subsys-tem for dealing with several kinds of irregular data: (rounded or structural) zeroes,incomplete observations and outliers. The general approach to these irregularities isbased on subcompositions: for an irregular datum, one can distinguish a “regular” sub-composition (where all parts are actually observed and the datum behaves typically)and a “problematic” subcomposition (with those unobserved, zero or rounded parts, orelse where the datum shows an erratic or atypical behaviour). Systematic classificationschemes are proposed for both outliers and missing values (including zeros) focusing onthe nature of irregularities in the datum subcomposition(s).To compute statistics with values missing at random and structural zeros, a projectionapproach is implemented: a given datum contributes to the estimation of the desiredparameters only on the subcompositon where it was observed. For data sets withvalues below the detection limit, two different approaches are provided: the well-knownimputation technique, and also the projection approach.To compute statistics in the presence of outliers, robust statistics are adapted to thecharacteristics of compositional data, based on the minimum covariance determinantapproach. The outlier classification is based on four different models of outlier occur-rence and Monte-Carlo-based tests for their characterization. Furthermore the packageprovides special plots helping to understand the nature of outliers in the dataset.Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator,robustness, rounded zeros
Resumo:
A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table