212 resultados para Mòduls (Àlgebra)
Resumo:
This is an introduction to some aspects of Fomin-Zelevinsky’s cluster algebras and their links with the representation theory of quivers and with Calabi-Yau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria)and 2008 (Jerusalem). In addition to by now classical material, we present the outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams (details will appear elsewhere) and recent results on the interpretation of mutations as derived equivalences.
Resumo:
We examine the proof of a classical localization theorem of Bousfield and Friedlander and we remove the assumption that the underlying model category be right proper. The key to the argument is a lemma about factoring in morphisms in the arrow category of a model category.
Resumo:
We establish a Quillen model structure on simplicial(symmetric) multicategories. It extends the model structure on simplicial categories due to J. Bergner [2]. We observe that our technique of proof enables us to prove a similar result for (symmetric) multicategories enriched over other monoidal model categories than simplicial sets. Examples include small categories, simplicial abelian groups and compactly generated Hausdorff spaces.
Resumo:
The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor triads. We illustrate both geometrically and algebraically how these two actions are dual. Both actions and their duality have been used to analyze works of music as diverse as Hindemith and the Beatles.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We construct a cofibrantly generated Thomason model structure on the category of small n-fold categories and prove that it is Quillen equivalent to the standard model structure on the category of simplicial sets. An n-fold functor is a weak equivalence if and only if the diagonal of its n-fold nerve is a weak equivalence of simplicial sets. We introduce an n-fold Grothendieck construction for multisimplicial sets, and prove that it is a homotopy inverse to the n-fold nerve. As a consequence, the unit and counit of the adjunction between simplicial sets and n-fold categories are natural weak equivalences.
Resumo:
We give a unified solution the conjugacy problem in Thompson’s groups F, V , and T using strand diagrams, and we analyze the complexity of the resulting algorithms.
Resumo:
We describe an explicit relationship between strand diagrams and piecewise-linear functions for elements of Thompson’s group F. Using this correspondence, we investigate the dynamics of elements of F, and we show that conjugacy of one-bump functions can be described by a Mather-type invariant.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The trace of a square matrix can be defined by a universal property which, appropriately generalized yields the concept of "trace of an endofunctor of a small category". We review the basic definitions of this general concept and give a new construction, the "pretrace category", which allows us to obtain the trace of an endofunctor of a small category as the set of connected components of its pretrace. We show that this pretrace construction determines a finite-product preserving endofunctor of the category of small categories, and we deduce from this that the trace inherits any finite-product algebraic structure that the original category may have. We apply our results to several examples from Representation Theory obtaining a new (indirect) proof of the fact that two finite dimensional linear representations of a finite group are isomorphic if and only if they have the same character.
Resumo:
We give a survey of some recent results on Grothendieck duality. We begin with a brief reminder of the classical theory, and then launch into an overview of some of the striking developments since 2005.
Resumo:
This article presents a way to associate a Grothendieck site structure to a category endowed with a unique factorisation system of its arrows. In particular this recovers the Zariski and Etale topologies and others related to Voevodsky's cd-structures. As unique factorisation systems are also frequent outside algebraic geometry, the same construction applies to some new contexts, where it is related with known structures dened otherwise. The paper details algebraic geometrical situations and sketches only the other contexts.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."