135 resultados para Location problems
Resumo:
In recent years, the large deployment of mobile devices has led to a massiveincrease in the volume of records of where people have been and when they were there.The analysis of these spatio-temporal data can supply high-level human behaviorinformation valuable to urban planners, local authorities, and designer of location-basedservices. In this paper, we describe our approach to collect and analyze the history ofphysical presence of tourists from the digital footprints they publicly disclose on the web.Our work takes place in the Province of Florence in Italy, where the insights on thevisitors’ flows and on the nationalities of the tourists who do not sleep in town has beenlimited to information from survey-based hotel and museums frequentation. In fact, mostlocal authorities in the world must face this dearth of data on tourist dynamics. In thiscase study, we used a corpus of geographically referenced photos taken in the provinceby 4280 photographers over a period of 2 years. Based on the disclosure of the locationof the photos, we design geovisualizations to reveal the tourist concentration and spatiotemporalflows. Our initial results provide insights on the density of tourists, the points ofinterests they visit as well as the most common trajectories they follow.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum Capture Problem. In the original MCP, market capture is obtained by lower traveling distances or lower traveling time, in this new version not only the traveling time but also the waiting time will affect the market share. This problem is hard to solve using standard optimization techniques. Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.
Resumo:
In todays competitive markets, the importance of goodscheduling strategies in manufacturing companies lead to theneed of developing efficient methods to solve complexscheduling problems.In this paper, we studied two production scheduling problemswith sequence-dependent setups times. The setup times areone of the most common complications in scheduling problems,and are usually associated with cleaning operations andchanging tools and shapes in machines.The first problem considered is a single-machine schedulingwith release dates, sequence-dependent setup times anddelivery times. The performance measure is the maximumlateness.The second problem is a job-shop scheduling problem withsequence-dependent setup times where the objective is tominimize the makespan.We present several priority dispatching rules for bothproblems, followed by a study of their performance. Finally,conclusions and directions of future research are presented.
Resumo:
In many areas of economics there is a growing interest in how expertise andpreferences drive individual and group decision making under uncertainty. Increasingly, we wish to estimate such models to quantify which of these drive decisionmaking. In this paper we propose a new channel through which we can empirically identify expertise and preference parameters by using variation in decisionsover heterogeneous priors. Relative to existing estimation approaches, our \Prior-Based Identification" extends the possible environments which can be estimated,and also substantially improves the accuracy and precision of estimates in thoseenvironments which can be estimated using existing methods.
Resumo:
In this paper we consider a location and pricing model for a retail firm that wants to enter a spatial market where a competitor firm is already operating as a monopoly with several outlets. The entering firms seeks to determine the optimal uniform mill price and its servers' locations that maximizes profits given the reaction in price of the competitor firm to its entrance. A tabu search procedure is presentedto solve the model together with computational experience.