108 resultados para Linear Optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce several exact nonparametric tests for finite sample multivariatelinear regressions, and compare their powers. This fills an important gap inthe literature where the only known nonparametric tests are either asymptotic,or assume one covariate only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new algorithm called the parameterized expectations approach(PEA) for solving dynamic stochastic models under rational expectationsis developed and its advantages and disadvantages are discussed. Thisalgorithm can, in principle, approximate the true equilibrium arbitrarilywell. Also, this algorithm works from the Euler equations, so that theequilibrium does not have to be cast in the form of a planner's problem.Monte--Carlo integration and the absence of grids on the state variables,cause the computation costs not to go up exponentially when the numberof state variables or the exogenous shocks in the economy increase. \\As an application we analyze an asset pricing model with endogenousproduction. We analyze its implications for time dependence of volatilityof stock returns and the term structure of interest rates. We argue thatthis model can generate hump--shaped term structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid(whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then theproblem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new unifying framework for investigating throughput-WIP(Work-in-Process) optimal control problems in queueing systems,based on reformulating them as linear programming (LP) problems withspecial structure: We show that if a throughput-WIP performance pairin a stochastic system satisfies the Threshold Property we introducein this paper, then we can reformulate the problem of optimizing alinear objective of throughput-WIP performance as a (semi-infinite)LP problem over a polygon with special structure (a thresholdpolygon). The strong structural properties of such polygones explainthe optimality of threshold policies for optimizing linearperformance objectives: their vertices correspond to the performancepairs of threshold policies. We analyze in this framework theversatile input-output queueing intensity control model introduced byChen and Yao (1990), obtaining a variety of new results, including (a)an exact reformulation of the control problem as an LP problem over athreshold polygon; (b) an analytical characterization of the Min WIPfunction (giving the minimum WIP level required to attain a targetthroughput level); (c) an LP Value Decomposition Theorem that relatesthe objective value under an arbitrary policy with that of a giventhreshold policy (thus revealing the LP interpretation of Chen andYao's optimality conditions); (d) diminishing returns and invarianceproperties of throughput-WIP performance, which underlie thresholdoptimality; (e) a unified treatment of the time-discounted andtime-average cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an exact test for whether two random variables that have known bounds on their support are negatively correlated. The alternative hypothesis is that they are not negatively correlated. No assumptions are made on the underlying distributions. We show by example that the Spearman rank correlation test as the competing exact test of correlation in nonparametric settings rests on an additional assumption on the data generating process without which it is not valid as a test for correlation.We then show how to test for the significance of the slope in a linear regression analysis that invovles a single independent variable and where outcomes of the dependent variable belong to a known bounded set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a test of the predictive validity of various classes ofQALY models (i.e., linear, power and exponential models). We first estimatedTTO utilities for 43 EQ-5D chronic health states and next these states wereembedded in health profiles. The chronic TTO utilities were then used topredict the responses to TTO questions with health profiles. We find that thepower QALY model clearly outperforms linear and exponential QALY models.Optimal power coefficient is 0.65. Our results suggest that TTO-based QALYcalculations may be biased. This bias can be avoided using a power QALY model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The network choice revenue management problem models customers as choosing from an offer-set, andthe firm decides the best subset to offer at any given moment to maximize expected revenue. The resultingdynamic program for the firm is intractable and approximated by a deterministic linear programcalled the CDLP which has an exponential number of columns. However, under the choice-set paradigmwhen the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has beenproposed but finding an entering column has been shown to be NP-hard. In this paper, starting with aconcave program formulation based on segment-level consideration sets called SDCP, we add a class ofconstraints called product constraints, that project onto subsets of intersections. In addition we proposea natural direct tightening of the SDCP called ?SDCP, and compare the performance of both methodson the benchmark data sets in the literature. Both the product constraints and the ?SDCP method arevery simple and easy to implement and are applicable to the case of overlapping segment considerationsets. In our computational testing on the benchmark data sets in the literature, SDCP with productconstraints achieves the CDLP value at a fraction of the CPU time taken by column generation and webelieve is a very promising approach for quickly approximating CDLP when segment consideration setsoverlap and the consideration sets themselves are relatively small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on judgment and decision making presents a confusing picture of human abilities. For example, much research has emphasized the dysfunctional aspects of judgmental heuristics, and yet, other findings suggest that these can be highly effective. A further line of research has modeled judgment as resulting from as if linear models. This paper illuminates the distinctions in these approaches by providing a common analytical framework based on the central theoretical premise that understanding human performance requires specifying how characteristics of the decision rules people use interact with the demands of the tasks they face. Our work synthesizes the analytical tools of lens model research with novel methodology developed to specify the effectiveness of heuristics in different environments and allows direct comparisons between the different approaches. We illustrate with both theoretical analyses and simulations. We further link our results to the empirical literature by a meta-analysis of lens model studies and estimate both human andheuristic performance in the same tasks. Our results highlight the trade-off betweenlinear models and heuristics. Whereas the former are cognitively demanding, the latterare simple to use. However, they require knowledge and thus maps of when andwhich heuristic to employ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.