75 resultados para Iron Chelating Agents
Resumo:
Ceramic vessels and milling stones are important components of the archaeological record in several Nuraghi from the Pranemuru Plateau (Sardinia). To obtain information on the possible uses of the milling stones and the content vessels is of great interest to understand the economical activities carried out in these sites by these populations. One of the approaches to obtain information on the plant uses was the phytolith analyses of the sediment adhered both to the surface of the milling stones and to the surface of the vessel content. In total we analyzed eleven archaeological samples and two control samples collected from five different Nuraghi in the Pranemuru Plateau (Nuoro Province, Sardinia). The Nuraghi were located in an area of 10 km radius from nuraghe Arrubiu and were chronologically ascribed to the Bronze Age and one site -Pranu Illixi- to the Iron Age.
Resumo:
Rapid manufacturing is an advanced manufacturing technology based on layer-by-layer manufacturing to produce a part. This paper presents experimental work carried out to investigate the effects of scan speed, layer thickness, and building direction on the following part features: dimensional error, surface roughness, and mechanical properties for DMLS with DS H20 powder and SLM with CL 20 powder (1.4404/AISI 316L). Findings were evaluated using ANOVA analysis. According to the experimental results, build direction has a significant effect on part quality, in terms of dimensional error and surface roughness. For the SLM process, the build direction has no influence on mechanical properties. Results of this research support industry estimating part quality and mechanical properties before the production of parts with additive manufacturing, using iron-based powders
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Multitarget compounds are increasingly being pursued for the effective treatment of complex diseases. Herein, we describe the design and synthesis of a novel class of shogaolhuprine hybrids, purported to hit several key targets involved in Alzheimer"s disease. The hybrids have been tested in vitro for their inhibitory activity against human acetylcholinesterase and butyrylcholinesterase and antioxidant activity (ABTS.+, DPPH and Folin-Ciocalteu assays), and in intact Escherichia coli cells for their Aβ42 and tau anti-aggregating activity. Also, their brain penetration has been assessed (PAMPA-BBB assay). Even though the hybrids are not as potent AChE inhibitors or antioxidant agents as the parent huprine Y and [4]-shogaol, respectively, they still exhibit very potent anticholinesterase and antioxidant activities and are much more potent Aβ42 and tau anti-aggregating agents than the parent compounds. Overall, the shogaolhuprine hybrids emerge as interesting brain permeable multitarget anti-Alzheimer leads.
Resumo:
The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide
Resumo:
We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
Resumo:
Multitarget compounds are increasingly being pursued for the effective treatment of complex diseases. Herein, we describe the design and synthesis of a novel class of shogaolhuprine hybrids, purported to hit several key targets involved in Alzheimer"s disease. The hybrids have been tested in vitro for their inhibitory activity against human acetylcholinesterase and butyrylcholinesterase and antioxidant activity (ABTS.+, DPPH and Folin-Ciocalteu assays), and in intact Escherichia coli cells for their Aβ42 and tau anti-aggregating activity. Also, their brain penetration has been assessed (PAMPA-BBB assay). Even though the hybrids are not as potent AChE inhibitors or antioxidant agents as the parent huprine Y and [4]-shogaol, respectively, they still exhibit very potent anticholinesterase and antioxidant activities and are much more potent Aβ42 and tau anti-aggregating agents than the parent compounds. Overall, the shogaolhuprine hybrids emerge as interesting brain permeable multitarget anti-Alzheimer leads.
Resumo:
We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
Resumo:
Multitarget compounds are increasingly being pursued for the effective treatment of complex diseases. Herein, we describe the design and synthesis of a novel class of shogaolhuprine hybrids, purported to hit several key targets involved in Alzheimer"s disease. The hybrids have been tested in vitro for their inhibitory activity against human acetylcholinesterase and butyrylcholinesterase and antioxidant activity (ABTS.+, DPPH and Folin-Ciocalteu assays), and in intact Escherichia coli cells for their Aβ42 and tau anti-aggregating activity. Also, their brain penetration has been assessed (PAMPA-BBB assay). Even though the hybrids are not as potent AChE inhibitors or antioxidant agents as the parent huprine Y and [4]-shogaol, respectively, they still exhibit very potent anticholinesterase and antioxidant activities and are much more potent Aβ42 and tau anti-aggregating agents than the parent compounds. Overall, the shogaolhuprine hybrids emerge as interesting brain permeable multitarget anti-Alzheimer leads.
Resumo:
We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
Resumo:
Multitarget compounds are increasingly being pursued for the effective treatment of complex diseases. Herein, we describe the design and synthesis of a novel class of shogaolhuprine hybrids, purported to hit several key targets involved in Alzheimer"s disease. The hybrids have been tested in vitro for their inhibitory activity against human acetylcholinesterase and butyrylcholinesterase and antioxidant activity (ABTS.+, DPPH and Folin-Ciocalteu assays), and in intact Escherichia coli cells for their Aβ42 and tau anti-aggregating activity. Also, their brain penetration has been assessed (PAMPA-BBB assay). Even though the hybrids are not as potent AChE inhibitors or antioxidant agents as the parent huprine Y and [4]-shogaol, respectively, they still exhibit very potent anticholinesterase and antioxidant activities and are much more potent Aβ42 and tau anti-aggregating agents than the parent compounds. Overall, the shogaolhuprine hybrids emerge as interesting brain permeable multitarget anti-Alzheimer leads.
Resumo:
Of the many dimensions of the problem of violence exercised by men toward women in the context of the relations of partner or ex partner, this article deals with the analysis of the discursive productions of the institutional actors that are part of the judicial process. Our intention is to investigate the relationship between criminal law and gender-based violence starting from the implementation of the Law of Integral Gender-based Violence in Spain (LO. 1 / 2004) from a theoretical perspective which includes contributions from social psychology, and socio-legal feminism. We have approached the legal instrument - the Law of Integral Gender-based Violence - through the discourse of legal officers with a perspective that questions the values, so often proclaimed, of universality, objectivity and neutrality of the law