64 resultados para Interview Methods
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flow computation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we de- velop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional mul- tilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrec- tional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimiza- tion search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow com- putation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
The main goal of this special issue was to gather contributions dealing with the latest breakthrough methods for providing value compounds and energy/fuel from waste valorization. Valorization is a relatively new approach in the area of industrial wastes management, a key issue to promote sustainable development. In this field, the recovery of value-added substances, such as antioxidants, proteins, vitamins, and so forth, from the processing of agroindustrial byproducts, is worth mentioning. Another important valorization approach is the use of biogas from waste treatment plants for the production of energy. Several approaches involving physical and chemical processes, thermal and biological processes that ensure reduced emissions and energy consumptions were taken into account. The papers selected for this topical issue represent some of the mostly researched methods that currently promote the valorization of wastes to energy and useful materials ...
Resumo:
It is well known that hospital malnutrition is a highly prevalent condition associated to increase morbidity and mortality as well as related healthcare costs. Although previous studies have already measured the prevalence and/or costs of hospital nutrition in our country, their local focus (at regional or even hospital level) make that the true prevalence and economic impact of hospital malnutrition for the National Health System remain unknown in Spain. The PREDyCES® (Prevalence of hospital malnutrition and associated costs in Spain) study was aimed to assess the prevalence of hospital malnutrition in Spain and to estimate related costs. Some aspects made this study unique: a) It was the first study in a representative sample of hospitals of Spain; b) different measures to assess hospital malnutrition (NRS2002, MNA as well as anthropometric and biochemical markers) where used both at admission and discharge and, c) the economic consequences of malnutrition where estimated using the perspective of the Spanish National Health System.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.