93 resultados para Image processing - Digital techniques
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
This work investigates performance of recent feature-based matching techniques when applied to registration of underwater images. Matching methods are tested versus different contrast enhancing pre-processing of images. As a result of the performed experiments for various dominating in images underwater artifacts and present deformation, the outperforming preprocessing, detection and description methods are proposed
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
Este trabajo presenta un sistema para detectar y clasificar objetos binarios según la forma de éstos. En el primer paso del procedimiento, se aplica un filtrado para extraer el contorno del objeto. Con la información de los puntos de forma se obtiene un descriptor BSM con características altamente descriptivas, universales e invariantes. En la segunda fase del sistema se aprende y se clasifica la información del descriptor mediante Adaboost y Códigos Correctores de Errores. Se han usado bases de datos públicas, tanto en escala de grises como en color, para validar la implementación del sistema diseñado. Además, el sistema emplea una interfaz interactiva en la que diferentes métodos de procesamiento de imágenes pueden ser aplicados.
Resumo:
El treball presentat suposa una visió general de l'"Endoscopia amb Càpsula de Vídeo Wireless" i la inspecció de sequències de contraccions intestinals amb les últimes tecnologies de visió per computador. Després de la observació preliminar dels fonaments mèdics requerits, la aplicació de visió per computador es presenta en aquestos termes. En essència, aquest treball proveïx una exhaustiva selecció, descripció i avaluació de cert conjunt de mètodes de processament d'imatges respecte a l'anàlisi de moviment, en el entorn de seqüències d'imatges preses amb una càpsula endoscòpica. Finalment, es presenta una aplicació de software per configurar i emprar de forma ràpida i fàcil un entorn experimental.
Resumo:
La regeneració òssia és un procés estudiat per experts de tot el món. Aquests experts estudien materials capaços d’accelerar el procés de formació de teixit ossi en zones on s’han produït defectes ossis. Després d’un determinat període de temps de l’aplicació dels materials d’estudi en la zona on hi havia una manca de teixit ossi, s’obtenen imatges d’aquesta zona on l’expert mitjançant l’ inspecció visual d’aquestes imatges avalua si l’os s’ha regenerat bé o no. El problema d’aquest mètode d’avaluació es que requereix d’un expert on la valoració d’aquest és subjectiva i difícil de quantificar, el que pot provocar que hi hagi discordança entre experts. Amb la finalitat de aprofitar les imatges en que es basa l’expert per avaluar la capacitat de regeneració òssia dels materials d’estudi es proposa realitzar un anàlisi quantitatiu de la regeneració òssia basat en el processament d’imatge. L’algorisme dissenyat es capaç de classificar imatges de la mandíbula en: imatges de regeneració bona i dolenta mitjançant la parametrització de l’histograma de nivells de grisos de la imatge, solucionant la falta d’objectivitat del mètode d’avaluació de la regeneració òssia i la necessitat d’un expert per realitzar-la.
Resumo:
El present treball de fi de carrera es planteja en base a l'anàlisi, planificació i desenvolupament d'una aplicació web basada en el model Java EE i que permetrà als usuaris del sistema la creació de col leccions digitals de fotografies.
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Resumo:
This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory
Resumo:
This paper presents an approach to ameliorate the reliability of the correspondence points relating two consecutive images of a sequence. The images are especially difficult to handle, since they have been acquired by a camera looking at the sea floor while carried by an underwater robot. Underwater images are usually difficult to process due to light absorption, changing image radiance and lack of well-defined features. A new approach based on gray-level region matching and selective texture analysis significantly improves the matching reliability
Resumo:
It is well known that image processing requires a huge amount of computation, mainly at low level processing where the algorithms are dealing with a great number of data-pixel. One of the solutions to estimate motions involves detection of the correspondences between two images. For normalised correlation criteria, previous experiments shown that the result is not altered in presence of nonuniform illumination. Usually, hardware for motion estimation has been limited to simple correlation criteria. The main goal of this paper is to propose a VLSI architecture for motion estimation using a matching criteria more complex than Sum of Absolute Differences (SAD) criteria. Today hardware devices provide many facilities for the integration of more and more complex designs as well as the possibility to easily communicate with general purpose processors
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions