78 resultados para Image Processing, Visual Prostheses, Visual Information, Artificial Human Vision, Visual Perception
Resumo:
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image processing. This paper provides the theoretical background and technical information for performing the experiment. The proposed activity requires students able to develop a wide range of skills since they are expected to deal with optical components, including spatial light modulators, and develop scripts to perform some calculations.
Resumo:
Real-world images are complex objects, difficult to describe but at the same time possessing a high degree of redundancy. A very recent study [1] on the statistical properties of natural images reveals that natural images can be viewed through different partitions which are essentially fractal in nature. One particular fractal component, related to the most singular (sharpest) transitions in the image, seems to be highly informative about the whole scene. In this paper we will show how to decompose the image into their fractal components.We will see that the most singular component is related to (but not coincident with) the edges of the objects present in the scenes. We will propose a new, simple method to reconstruct the image with information contained in that most informative component.We will see that the quality of the reconstruction is strongly dependent on the capability to extract the relevant edges in the determination of the most singular set.We will discuss the results from the perspective of coding, proposing this method as a starting point for future developments.
Resumo:
We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.
Resumo:
We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
La informació biomètrica s'ha convertit en una tecnologia complementària a la criptografia que permet administrar còmodament les dades criptogràfiques. Són útils dues necessitats importants: en primer lloc, posar aquestes dades sempre a mà i, a més, fent fàcilment identificable el seu legítim propietari. En aquest article es proposa un sistema que integra la signatura biomètrica de reconeixement facial amb un esquema de signatura basat en la identitat, de manera que la cara de l'usuari esdevé la seva clau pública i la ID del sistema. D'aquesta manera, altres usuaris poden verificar els missatges utilitzant fotos del remitent, proporcionant un intercanvi raonable entre la seguretat del sistema i la usabilitat, així com una manera molt més senzilla d'autenticar claus públiques i processos de distribució.
Resumo:
In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence.
Resumo:
Interception requires precise estimation of time-to-contact (TTC) information. A long-standing view posits that all relevant information for extracting TTC is available in the angular variables, which result from the projection of distal objecs on to the retina. The diferent timing models rooted in this tradition have consequently relied on combining visual angle and its rate of expansion in diferent ways with tau being the most well-known solution for TTC...
Resumo:
The integration of the human brain with computers is an interesting new area of applied neuroscience, where one application is replacement of a person"s real body by a virtual representation. Here we demonstrate that a virtual limb can be made to feel part of your body if appropriate multisensory correlations are provided. We report an illusion that is invoked through tactile stimulation on a person"s hidden real right hand with synchronous virtual visual stimulation on an aligned 3D stereo virtual arm projecting horizontally out of their shoulder. An experiment with 21 male participants showed displacement of ownership towards the virtual hand, as illustrated by questionnaire responses and proprioceptive drift. A control experiment with asynchronous tapping was carried out with a different set of 20 male participants who did not experience the illusion. After 5 min of stimulation the virtual arm rotated. Evidence suggests that the extent of the illusion was also correlated with the degree of muscle activity onset in the right arm as measured by EMG during this period that the arm was rotating, for the synchronous but not the asynchronous condition. A completely virtual object can therefore be experienced as part of one"s self, which opens up the possibility that an entire virtual body could be felt as one"s own in future virtual reality applications or online games, and be an invaluable tool for the understanding of the brain mechanisms underlying body ownership.
Resumo:
Different asymmetries between expansion and contraction (radial motions) have been reported in the literature. Often these patterns have been regarded as implying different channels for each type of radial direction (outward versus inwards) operating at a higher level of visual motion processing. In two experiments (detection and discrimination tasks) we report reaction time asymmetries between expansion and contraction. Power functions were fitted to the data. While an exponent of 0.5 accounted for the expansion data better, a value of unity yielded the best fit for the contraction data. Instead of interpreting these differences as corresponding to different higher order motion detectors, we regard these findings as reflecting the fact that expansion and contraction tap two distinct psychophysical input channels underlying the processing of fast and slow velocities respectively.
Resumo:
The Cherenkov light flashes produced by Extensive Air Showers are very short in time. A high bandwidth and fast digitizing readout, therefore, can minimize the influence of the background from the light of the night sky, and improve the performance in Cherenkov telescopes. The time structure of the Cherenkov image can further be used in single-dish Cherenkov telescopes as an additional parameter to reduce the background from unwanted hadronic showers. A description of an analysis method which makes use of the time information and the subsequent improvement on the performance of the MAGIC telescope (especially after the upgrade with an ultra fast 2 GSamples/s digitization system in February 2007) will be presented. The use of timing information in the analysis of the new MAGIC data reduces the background by a factor two, which in turn results in an enhancement of about a factor 1.4 of the flux sensitivity to point-like sources, as tested on observations of the Crab Nebula.
Resumo:
A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation