65 resultados para INFRARED-LASER
Resumo:
MGRO J2019+37 is an unidentified extended source of very high energy gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653 , discovered by AGILE and associated with PSR J2021+3651 , could contribute to the emission from MGRO J2019+37 . Aims. Our aim is to identify radio and near-infrared sources in the field of the extended TeV source MGRO J2019+37 , and study potential counterparts to explain its emission. Methods. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the near-infrared -band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. Results. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37 , and the results of a cross-correlation of this catalog with one obtained at near-infrared wavelengths, which contains ~3105 sources, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1° uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1 , two new radio-jet sources, the H II region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158 . We also find that the hadronic scenario is the most likely in case of a single accelerator, and discuss the possible contribution from the sources mentioned above. Conclusions. Although the radio and GeV pulsar PSR J2021+3651 / AGL J2020.5+3653 and its associated pulsar wind nebula PWN G75.2+0.1 can contribute to the emission from MGRO J2019+37 , extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Other sources discussed here could contribute to the emission of the Milagro source.
Resumo:
The CORNISH project is the highest resolution radio continuum survey of the Galactic plane to date. It is the 5 GHz radio continuum part of a series of multi-wavelength surveys that focus on the northern GLIMPSE region (10° < l < 65°), observed by the Spitzer satellite in the mid-infrared. Observations with the Very Large Array in B and BnA configurations have yielded a 1.''5 resolution Stokes I map with a root mean square noise level better than 0.4 mJy beam 1. Here we describe the data-processing methods and data characteristics, and present a new, uniform catalog of compact radio emission. This includes an implementation of automatic deconvolution that provides much more reliable imaging than standard CLEANing. A rigorous investigation of the noise characteristics and reliability of source detection has been carried out. We show that the survey is optimized to detect emission on size scales up to 14'' and for unresolved sources the catalog is more than 90% complete at a flux density of 3.9 mJy. We have detected 3062 sources above a 7σ detection limit and present their ensemble properties. The catalog is highly reliable away from regions containing poorly sampled extended emission, which comprise less than 2% of the survey area. Imaging problems have been mitigated by down-weighting the shortest spacings and potential artifacts flagged via a rigorous manual inspection with reference to the Spitzer infrared data. We present images of the most common source types found: H II regions, planetary nebulae, and radio galaxies. The CORNISH data and catalog are available online at http://cornish.leeds.ac.uk.
Resumo:
The possibility of printing two-dimensional micropatterns of biomolecule solutions is of great interest in many fields of research in biomedicine, from cell-growth and development studies to the investigation of the mechanisms of communication between cells. Although laser-induced forward transfer (LIFT) has been extensively used to print micrometric droplets of biological solutions, the fabrication of complex patterns depends on the feasibility of the technique to print micron-sized lines of aqueous solutions. In this study we investigate such a possibility through the analysis of the influence of droplet spacing of a water and glycerol solution on the morphology of the features printed by LIFT. We prove that it is indeed possible to print long and uniform continuous lines by controlling the overlap between adjacent droplets. We show how, depending on droplet spacing, several printed morphologies are generated, and we offer, in addition, a simple explanation of the observed behavior based on the jetting dynamics characteristic of the LIFT of liquids.
Resumo:
Quickremovalofbiosolidsinaquaculturefacilities,andspeciallyinrecirculatingaquaculturesystems(RAS),isoneofthemostimportantstepinwastemanagement.Sedimentationdynamicsofbiosolidsinanaquaculturetankwilldeterminetheiraccumulationatthebottomofthetank.
Resumo:
Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation