85 resultados para Horizon d’attente
Resumo:
La sèrie d'informes Horizon és el resultat més tangible del Projecte Horizon del New Media Consortium, un esforç de recerca qualitativa iniciat el 2002, que identifica i descriu les tecnologies emergents amb més potencial d'impacte en l'ensenyament, l'aprenentatge, la recerca i la expressió creativa en l'àmbit educatiu global. Aquest volum, Technology Outlook: Iberoamerican Tertiary Education 2012-2017, és la segona edició del Projecte Horizon Iberoamèrica i se centra en la investigació en els països de la regió Iberoamericana (incloent-hi tota Llatinoamèrica, Espanya i Portugal) i en l'àmbit de l'educació superior. Ha estat produït pel NMC i l'eLearn Center de la Universitat Oberta de Catalunya.
Resumo:
We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes
Resumo:
This paper focuses on the analysis of a judicial defixio (AIJ557) found in 1912 in the River Kupa, a tributary of the Save, near Sisak (Siscia, Pannonia Superior), that invokes the river god Savus, as well as the ancient Latin goddess Tacita Muta. Among the targets, some of whom are specially stated to come from the western Mediterranean, we pay special attention to Lucius Licinius Sura, Hispanus. We also investigate the religious horizon implicit in the ritual offering, as well as the social and historical context of the information.
Resumo:
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α′ expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
Resumo:
We consider the linearized semiclassical Einstein equations for small deviations around de Sitter spacetime including the vacuum polarization effects of conformal fields. Employing the method of order reduction, we find the exact solutions for general metric perturbations (of scalar, vector and tensor type). Our exact (nonperturbative) solutions show clearly that in this case de Sitter is stable with respect to small metric deviations and a late-time attractor. Furthermore, they also reveal a breakdown of perturbative solutions for a sufficiently long evolution inside the horizon. Our results are valid for any conformal theory, even self-interacting ones with arbitrarily strong coupling.
Resumo:
Annualising work hours (AH) is a means of achievement flexibility in the use of human resources to face the seasonal nature of demand. In Corominas et al. (1) two MILP models are used to solve the problem of planning staff working hours with annual horizon. The costs due to overtime and to the employment of temporary workers are minimised, and the distribution of working time over the course of the year for each worker and the distribution of working time provided by temporary workers are regularised.In the aforementioned paper, the following is assumed: (i) the holiday weeks are fixed a priori and (ii) the workers are from different categories who are able to perform specific type of task have se same efficiency; moreover, the values of the binary variables (and others) in the second model are fixed to those in the first model (thus, in the second model these will intervene as constants and not as variables, resulting in an LP model).In the present paper, these assumptions are relaxed and a more general problem is solved. The computational experiment leads to the conclusion that MILP is a technique suited to dealing with the problem.
Resumo:
En aquest treball es presenta una proposta per a la denominació d'horitzons genètics dels sòls de Catalunya, recollint especialment el cas de la gènesi dels que s'han desenvolupat sobre materials originaris rics en carbonatats i guix. Al llarg del document s'expliciten els criteris de denominació i les regles nomenclaturals adoptades, com també la utilització dels subíndexs per indicar els processos edafics i les propietats dels horitzons. Finalment, es presenta un conjunt de denominacions per als horitzons més freqüentment trobats a Catalunya.
Resumo:
The impact, on nitrogen and phosphorous dynamics, of applying compost at different rates was investigated in soils developed on schist in new terraced vineyards (NTV) and in undisturbed areas (NC). Repacked soil columns amended with 0 (control), 50 t ha –1 (T1) and 100 t ha–1 (T2) of compost were studied under laboratory conditions simulating both situations. The columns were maintained for 1 year, during which time a total of 300 mm of simulated rainfall was applied in ten 30 mm applications. Soil organic matter (OM), nitrogen and phosphorous contents were analysed at the end of the study period and leachates were analysed after each simulated rainfall event. Significant differences in nitrate leaching were observed between the control and the treated soils and these differences were greater in the NC (control = 1.368 g, T1 = 1.526 g and T2 = 1.686 g) than in the NTV soils (control = 0.61 g, T1 = = 1.068 g and T2 = 1.283 g). The relative effect was greater in the NTV soils (T1/control = 1.11 vs. 1.75 and T2/control = 1.23 vs. 2.1 for NC and NTV, respectively). The nitrate concentration in the leached water reached up to 400 mg L–1, which implied a risk of groundwater pollution. Phosphorous losses through leaching were very low with concentrations of < 0.15 mg L–1, without any significant differences between treatments. The phosphorous concentrations in the surface horizon increased by 50.8% in T1 and by 66.8% in T2 in the NC soils, compared with increases of 20.3% and 38%, respectively, in the NTV soils. Due to the high infiltration capacity of the study soils, leaching effects must be considered in order to prevent groundwater pollution.
Resumo:
We estimate how climate variables affect price and acreage of productive farmland using the Ricardian approach. Furthermore, we use our estimations to evaluate the joint effects of possible cli- mate changes within the time horizon of 2010 and 2050. Our results show that the price of rainfed land in Spain tends to increase but rainfed acreage decreases. On the other hand, the effect on irrigated farmland price and acreage presents some mixed results, however, in the long run the dominant pattern is clearly increasing for both prices and acreage.
Resumo:
The formation and semiclassical evaporation of two-dimensional black holes is studied in an exactly solvable model. Above a certain threshold energy flux, collapsing matter forms a singularity inside an apparent horizon. As the black hole evaporates the apparent horizon recedes and meets the singularity in a finite proper time. The singularity emerges naked, and future evolution of the geometry requires boundary conditions to be imposed there. There is a natural choice of boundary conditions which matches the evaporated black hole solution onto the linear dilaton vacuum. Below the threshold energy flux no horizon forms and boundary conditions can be imposed where infalling matter is reflected from a timelike boundary. All information is recovered at spatial infinity in this case.
Resumo:
The most general black M5-brane solution of eleven-dimensional supergravity (with a flat R4 spacetime in the brane and a regular horizon) is characterized by charge, mass and two angular momenta. We use this metric to construct general dual models of large-N QCD (at strong coupling) that depend on two free parameters. The mass spectrum of scalar particles is determined analytically (in the WKB approximation) and numerically in the whole two-dimensional parameter space. We compare the mass spectrum with analogous results from lattice calculations, and find that the supergravity predictions are close to the lattice results everywhere on the two dimensional parameter space except along a special line. We also examine the mass spectrum of the supergravity Kaluza-Klein (KK) modes and find that the KK modes along the compact D-brane coordinate decouple from the spectrum for large angular momenta. There are however KK modes charged under a U(1)×U(1) global symmetry which do not decouple anywhere on the parameter space. General formulas for the string tension and action are also given.
Resumo:
In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formationaccessible in the 1+1 gravity theory consideredis implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.
Resumo:
We investigate a model where the quantum dynamics of black hole evaporation is determined by imposing a boundary on the apparent horizon with suitable boundary conditions. An unconventional scenario for the evolution emerges: only an insignificant fraction of energy of order (mG)-1 is radiated out; the outgoing wave carries a very small part of the quantum-mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.
Resumo:
A common belief is that further quantum corrections near the singularity of a large black hole should not substantially modify the semiclassical picture of black hole evaporation; in particular, the outgoing spectrum of radiation should be very close to the thermal spectrum predicted by Hawking. In this paper we explore a possible counterexample: in the context of dilaton gravity, we find that nonperturbative quantum corrections which are important in strong-coupling regions may completely alter the semiclassical picture, to the extent that the presumptive spacelike boundary becomes timelike, changing in this way the causal structure of the semiclassical geometry. As a result, only a small fraction of the total energy is radiated outside the fake event horizon; most of the energy comes in fact at later retarded times and there is no problem of information loss. This may constitute a general characteristic of quantum black holes, that is, quantum gravity might be such as to prevent the formation of global event horizons.
Resumo:
The holographic isotropization of a highly anisotropic, homogeneous, strongly coupled, non-Abelian plasma was simplified in ref. [1] by linearizing Einstein"s equations around the final, equilibrium state. This approximation reproduces the expectation value of the boundary stress tensor with a 20% accuracy. Here we elaborate on these results and extend them to observables that are directly sensitive to the bulk interior, focusing for simplicity on the entropy production on the event horizon. We also consider next-to-leading-order corrections and show that the leading terms alone provide a better description of the isotropization process for the states that are furthest from equilibrium.