171 resultados para Fractional Diffusion Equation
Predicting random level and seasonality of hotel prices. A structural equation growth curve approach
Resumo:
This article examines the effect on price of different characteristics of holiday hotels in the sun-and-beach segment, under the hedonic function perspective. Monthly prices of the majority of hotels in the Spanish continental Mediterranean coast are gathered from May to October 1999 from the tour operator catalogues. Hedonic functions are specified as random-effect models and parametrized as structural equation models with two latent variables, a random peak season price and a random width of seasonal fluctuations. Characteristics of the hotel and the region where they are located are used as predictors of both latent variables. Besides hotel category, region, distance to the beach, availability of parking place and room equipment have an effect on peak price and also on seasonality. 3- star hotels have the highest seasonality and hotels located in the southern regions the lowest, which could be explained by a warmer climate in autumn
Resumo:
Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting formeasurement error. From the various specifications, Jöreskog and Yang's(1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
The goal of this paper is twofold: first, we aim to assess the role played by inventors’ cross-regional mobility and networks of collaboration in fostering knowledge diffusion across regions and subsequent innovation. Second, we intend to evaluate the feasibility of using mobility and networks information to build cross-regional interaction matrices to be used within the spatial econometrics toolbox. To do so, we depart from a knowledge production function where regional innovation intensity is a function not only of the own regional innovation inputs but also external accessible R&D gained through interregional interactions. Differently from much of the previous literature, cross-section gravity models of mobility and networks are estimated to use the fitted values to build our ‘spatial’ weights matrices, which characterize the intensity of knowledge interactions across a panel of 269 regions covering most European countries over 6 years.
Resumo:
We study the relationship between openness and payment system development. In particular, we analyze how the existence of technology diffusion from a more developed country fosters a transformation of payment choice in a less developed country. We apply our analysis to Mexico. Economic growth in Mexico was not high enough to cause a transformation of payment choice observed in the data after 2001. We argue that the switch towards electronic payments can be attributed to openness and related payment technology spillovers from the US in the context of NAFTA.
Resumo:
En aquest article es resumeixen els resultats publicats en un informe de l' ISS (Istituto Superiore di Sanità) del desembre de 2006, sobre un model matemàtic desenvolupat per un grup de treball que inclou a investigadors de les Universitats de Trento, Pisa i Roma, i els Instituts Nacionals de Salut (Istituto Superiore di Sanità, ISS), per avaluar i mesurar l'impacte de la transmissió i el control de la pandèmia de grip
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
We derive analytical expressions for the propagation speed of downward combustion fronts of thin solid fuels with a background flow initially at rest. The classical combustion model for thin solid fuels that consists of five coupled reaction-convection-diffusion equations is here reduced into a single equation with the gas temperature as the single variable. For doing so we apply a two-zone combustion model that divides the system into a preheating region and a pyrolyzing region. The speed of the combustion front is obtained after matching the temperature and its derivative at the location that separates both regions.We also derive a simplified version of this analytical expression expected to be valid for a wide range of cases. Flame front velocities predicted by our analyticalexpressions agree well with experimental data found in the literature for a large variety of cases and substantially improve the results obtained from a previous well-known analytical expression
Resumo:
We present the derivation of the continuous-time equations governing the limit dynamics of discrete-time reaction-diffusion processes defined on heterogeneous metapopulations. We show that, when a rigorous time limit is performed, the lack of an epidemic threshold in the spread of infections is not limited to metapopulations with a scale-free architecture, as it has been predicted from dynamical equations in which reaction and diffusion occur sequentially in time
Resumo:
The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous media are also analyzed and the effect of algebraic initial conditions is also discussed
Resumo:
The front speed of the Neolithic (farmer) spread in Europe decreased as it reached Northern latitudes, where the Mesolithic (huntergatherer) population density was higher. Here, we describe a reaction diffusion model with (i) an anisotropic dispersion kernel depending on the Mesolithicpopulation density gradient and (ii) a modified population growth equation. Both effects are related to the space available for the Neolithic population. The model is able to explain the slowdown of the Neolithic front as observed from archaeological data
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion
Resumo:
The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using singular perturbation analysis, the geometric approach of Hamilton-Jacobi dynamics, and the local speed approach. Exact and perturbed expressions for the front speed are obtained in the limit of large times. For linear and fractal heterogeneities, the analytic results have been compared with numerical results exhibiting a good agreement. Finally we reach a general expression for the speed of the front in the case of smooth and weak heterogeneities
Resumo:
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently