68 resultados para Evolutionary multiobjective optimization
Resumo:
Background: In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the"female calling plus male seduction" system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Methodology/Principal Findings: Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. Conclusions/Significance: This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
In this thesis (TFG) the results of the comparison between different methods to obtain a recombinant protein, by orthologous and heterologous expression, are exposed. This study will help us to identify the best way to express and purify a recombinant protein that will be used for biotechnology applications. In the first part of the project the goal was to find the best expression and purification system to obtain the recombinant protein of interest. To achieve this objective, a system expression in bacteria and in yeast was designed. The DNA was cloned into two different expression vectors to create a fusion protein with two different tags, and the expression of the protein was induced by IPTG or glucose. Additionally, in yeast, two promoters where used to express the protein, the one corresponding to the same protein (orthologous expression), and the ENO2 promoter (heterologous expression). The protein of interest is a NAD-dependent enzyme so, in a second time, its specific activity was evaluated by coenzyme conversion. The results of the TFG suggest that, comparing the model organisms, bacteria are more efficient than yeast because the quantity of protein obtained is higher and better purified. Regarding yeast, comparing the two expression mechanisms that were designed, heterologous expression works much better than the orthologous expression, so in case that we want to use yeast as expression model for the protein of interest, ENO2 will be the best option. Finally, the enzymatic assays, done to compare the effectiveness of the different expression mechanisms respect to the protein activity, revealed that the protein purified in yeast had more activity in converting the NAD coenzyme.
Resumo:
Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.
Resumo:
Analyzing the state of the art in a given field in order to tackle a new problem is always a mandatory task. Literature provides surveys based on summaries of previous studies, which are often based on theoretical descriptions of the methods. An engineer, however, requires some evidence from experimental evaluations in order to make the appropriate decision when selecting a technique for a problem. This is what we have done in this paper: experimentally analyzed a set of representative state-of-the-art techniques in the problem we are dealing with, namely, the road passenger transportation problem. This is an optimization problem in which drivers should be assigned to transport services, fulfilling some constraints and minimizing some function cost. The experimental results have provided us with good knowledge of the properties of several methods, such as modeling expressiveness, anytime behavior, computational time, memory requirements, parameters, and free downloadable tools. Based on our experience, we are able to choose a technique to solve our problem. We hope that this analysis is also helpful for other engineers facing a similar problem
Resumo:
The role of behavior in evolution remains controversial, despite that some ideas are over 100 years old. Changes in behavior are generally believed to enhance evolution by exposing individuals to new selective pressures and by facilitating range expansions. However, this hypothesis lacks firm empirical evidence. Moreover, behavioral changes can also inhibit evolution by hiding heritable variation from natural selection. Taking advantage of the complete phylogeny of extant birds, a new species-level measure of past diversification rate and the best existing measures of brain size (n = 1326 species), I show here that relative brain size is associated (albeit weakly) with diversification rates. Assuming that brain relative size reflects behavioral flexibility, an assumption well-supported by evidence, this finding supports the idea that behavior can enhance evolutionary diversification. This view is further supported by the discovery that the most important factor influencing diversification rates is ecological generalism, which is believed to require behavioral flexibility. Thus, behavioral changes that expose animals to a variety of environments can have played an important role in the evolution of birds.