100 resultados para Euler–Lagrange differential equations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several problems in the theory of photon migration in a turbid medium suggest the utility of calculating solutions of the telegrapher¿s equation in the presence of traps. This paper contains two such solutions for the one-dimensional problem, the first being for a semi-infinite line terminated by a trap, and the second being for a finite line terminated by two traps. Because solutions to the telegrapher¿s equation represent an interpolation between wavelike and diffusive phenomena, they will exhibit discontinuities even in the presence of traps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This reply adds a number of details to remarks by Foong and Kanno [preceding Comment, Phys. Rev. A 46, 5296 (1992)] on our paper [Phys. Rev. A 45, 2222 (1992)] regarding the discontinuities observed in the curves generated in that paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En una memoria anterior sobre la aplicación de los funcionales abeloides a la resolución de las ecuaciones en derivadas parciales de cuarto orden con coeficientes constantes (1), se hizo la clasificación de las ecuaciones cuyo cono característico posee una generatriz tacnodal. Entre las ecuaciones de tipo totalmente hiperbólico se destacaron dos casos: según que el cono característico correspondiente sea de género O (primer caso), o bien sea de género 1 (segundo caso). En la citada memoria se estudia dicho primer caso, mientras que en ésta trataremos del segundo: con más precisión, se tratará de resolver las ecuaciones en derivadas parciales del tipo indicado cuyo cono característico además de ser de género 1, sea simétrico respecto al plano tangente al cono a lo largo de la generatriz tacnodal. El desarrollo de los cálculos es aquí muy penoso pero se puede evitar mediante consideraciones sintéticas sobre los resultados obtenidos en la menloria anteriormente citada.