70 resultados para ELECTRON INJECTION
Resumo:
We use the analogy between scattering of a wave from a potential, and the precession of a spin-half particle in a magnetic field, to gain insight into the design of an antireflection coating for electrons in a semiconductor superlattice. It is shown that the classic recipes derived for optics are generally not applicable due to the different dispersion law for electrons. Using the stability conditions we show that a Poisson distribution of impedance steps is a better approximation than is a Gaussian distribution. Examples are given of filters with average transmissivity exceeding 95% over an allowed band.
Resumo:
Electron scattering on unstable nuclei is planned in future facilities of the GSI and RIKEN upgrades. Motivated by this fact, we study theoretical predictions for elastic electron scattering in the N=82, N=50, and N=14 isotonic chains from very proton-deficient to very proton-rich isotones. We compute the scattering observables by performing Dirac partial-wave calculations. The charge density of the nucleus is obtained with a covariant nuclear mean-field model that accounts for the low-energy electromagnetic structure of the nucleon. For the discussion of the dependence of scattering observables at low-momentum transfer on the gross properties of the charge density, we fit Helm model distributions to the self-consistent mean-field densities. We find that the changes shown by the electric charge form factor along each isotonic chain are strongly correlated with the underlying proton shell structure of the isotones. We conclude that elastic electron scattering experiments on isotones can provide valuable information about the filling order and occupation of the single-particle levels of protons.
Resumo:
A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is proposed for bremsstrahlung emission, which reproduces the radiative stopping powers derived from the partial wave calculations of Kissel, Quarles and Pratt [At. Data Nucl. Data Tables 28, 381 (1983)]. These ionization and radiative cross sections have been introduced into a general-purpose Monte Carlo code, which performs simulation of coupled electron and photon transport for arbitrary materials. To improve the efficiency of the simulation, interaction forcing, a variance reduction technique, has been applied for both ionizing collisions and radiative events. The reliability of simulated x-ray spectra is analyzed by comparing simulation results with electron probe measurements.
Resumo:
We present a general algorithm for the simulation of x-ray spectra emitted from targets of arbitrary composition bombarded with kilovolt electron beams. Electron and photon transport is simulated by means of the general-purpose Monte Carlo code PENELOPE, using the standard, detailed simulation scheme. Bremsstrahlung emission is described by using a recently proposed algorithm, in which the energy of emitted photons is sampled from numerical cross-section tables, while the angular distribution of the photons is represented by an analytical expression with parameters determined by fitting benchmark shape functions obtained from partial-wave calculations. Ionization of K and L shells by electron impact is accounted for by means of ionization cross sections calculated from the distorted-wave Born approximation. The relaxation of the excited atoms following the ionization of an inner shell, which proceeds through emission of characteristic x rays and Auger electrons, is simulated until all vacancies have migrated to M and outer shells. For comparison, measurements of x-ray emission spectra generated by 20 keV electrons impinging normally on multiple bulk targets of pure elements, which span the periodic system, have been performed using an electron microprobe. Simulation results are shown to be in close agreement with these measurements.
Resumo:
We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.
Resumo:
BACKGROUND: Hospitalization is a costly and distressing event associated with relapse during schizophrenia treatment. No information is available on the predictors of psychiatric hospitalization during maintenance treatment with olanzapine long-acting injection (olanzapine-LAI) or how the risk of hospitalization differs between olanzapine-LAI and oral olanzapine. This study aimed to identify the predictors of psychiatric hospitalization during maintenance treatment with olanzapine-LAI and assessed four parameters: hospitalization prevalence, incidence rate, duration, and the time to first hospitalization. Olanzapine-LAI was also compared with a sub-therapeutic dose of olanzapine-LAI and with oral olanzapine. METHODS: This was a post hoc exploratory analysis of data from a randomized, double-blind study comparing the safety and efficacy of olanzapine-LAI (pooled active depot groups: 405 mg/4 weeks, 300 mg/2 weeks, and 150 mg/2 weeks) with oral olanzapine and sub-therapeutic olanzapine-LAI (45 mg/4 weeks) during 6 months' maintenance treatment of clinically stable schizophrenia outpatients (n=1064). The four psychiatric hospitalization parameters were analyzed for each treatment group. Within the olanzapine-LAI group, patients with and without hospitalization were compared on baseline characteristics. Logistic regression and Cox's proportional hazards models were used to identify the best predictors of hospitalization. Comparisons between the treatment groups employed descriptive statistics, the Kaplan-Meier estimator and Cox's proportional hazards models. RESULTS: Psychiatric hospitalization was best predicted by suicide threats in the 12 months before baseline and by prior hospitalization. Compared with sub-therapeutic olanzapine-LAI, olanzapine-LAI was associated with a significantly lower hospitalization rate (5.2% versus 11.1%, p < 0.01), a lower mean number of hospitalizations (0.1 versus 0.2, p = 0.01), a shorter mean duration of hospitalization (1.5 days versus 2.9 days, p < 0.01), and a similar median time to first hospitalization (35 versus 60 days, p = 0.48). Olanzapine-LAI did not differ significantly from oral olanzapine on the studied hospitalization parameters. CONCLUSIONS: In clinically stable schizophrenia outpatients receiving olanzapine-LAI maintenance treatment, psychiatric hospitalization was best predicted by a history of suicide threats and prior psychiatric hospitalization. Olanzapine-LAI was associated with a significantly lower incidence of psychiatric hospitalization and shorter duration of hospitalization compared with sub-therapeutic olanzapine-LAI. Olanzapine-LAI did not differ significantly from oral olanzapine on hospitalization parameters.
Resumo:
BACKGROUND: Little is known about the long-term changes in the functioning of schizophrenia patients receiving maintenance therapy with olanzapine long-acting injection (LAI), and whether observed changes differ from those seen with oral olanzapine. METHODS: This study describes changes in the levels of functioning among outpatients with schizophrenia treated with olanzapine-LAI compared with oral olanzapine over 2 years. This was a secondary analysis of data from a multicenter, randomized, open-label, 2-year study comparing the long-term treatment effectiveness of monthly olanzapine-LAI (405 mg/4 weeks; n=264) with daily oral olanzapine (10 mg/day; n=260). Levels of functioning were assessed with the Heinrichs-Carpenter Quality of Life Scale. Functional status was also classified as 'good', 'moderate', or 'poor', using a previous data-driven approach. Changes in functional levels were assessed with McNemar's test and comparisons between olanzapine-LAI and oral olanzapine employed the Student's t-test. RESULTS: Over the 2-year study, the patients treated with olanzapine-LAI improved their level of functioning (per Quality of Life total score) from 64.0-70.8 (P<0.001). Patients on oral olanzapine also increased their level of functioning from 62.1-70.1 (P<0.001). At baseline, 19.2% of the olanzapine-LAI-treated patients had a 'good' level of functioning, which increased to 27.5% (P<0.05). The figures for oral olanzapine were 14.2% and 24.5%, respectively (P<0.001). Results did not significantly differ between olanzapine-LAI and oral olanzapine. CONCLUSION: In this 2-year, open-label, randomized study of olanzapine-LAI, outpatients with schizophrenia maintained or improved their favorable baseline level of functioning over time. Results did not significantly differ between olanzapine-LAI and oral olanzapine.
Resumo:
Because of technical principles, samples to be observed with electron microscopy need to be fixed in a chemical process and exposed to vacuum conditions that can produce some changes in the morphology of the specimen. The aim of this work was to obtain high-resolution images of the fresh articular cartilage surface with an environmental scanning electron microscope (ESEM), which is an instrument that permits examination of biological specimens without fixation methods in a 10 Torr chamber pressure, thus minimizing the risk of creating artifacts in the structure. Samples from weight-bearing areas of femoral condyles of New Zealand white rabbits were collected and photographed using an ESEM. Images were analyzed using a categorization based in the Jurvelin classification system modified by Hong and Henderson. Appearance of the observed elevations and depressions as described in the classification were observed, but no fractures or splits of cartilage surface, thought to be artifacts, were detected. The ESEM is a useful tool to obtain images of fresh articular cartilage surface appearance without either employing fixation methods or exposing the specimen to extreme vacuum conditions, reducing the risk of introducing artifacts within the specimen. For all these reasons it could become a useful tool for quality control of the preservation process of osteochondral allografting in a bank of musculoskeletal tissues.