87 resultados para DNA mixtures
Resumo:
Background: Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established. Methodology/Principal Findings: We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A) of the mitochondrial DNA Polymerase c, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE) indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35–50%) in the content of electron transport chain (ETC) complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Dym). Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS) production or oxidative damage. Conclusions/Significance: These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia.
Resumo:
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.
Resumo:
Mitotic chromosome segregation requires the removal of physical connections between sister chromatids. In addition to cohesin and topological entrapments, sister chromatid separation can be prevented by the presence of chromosome junctions or ongoing DNA replication. We will collectively refer to them as DNA-mediated linkages. Although this type of structures has been documented in different DNA replication and repair mutants, there is no known essential mechanism ensuring their timely removal before mitosis. Here, we show that the dissolution of these connections is an active process that requires the Smc5/6 complex, together with Mms21, its associated SUMO-ligase. Failure to remove DNA-mediated linkages causes gross chromosome missegregation in anaphase. Moreover, we show that Smc5/6 is capable to dissolve them in metaphase-arrested cells, thus restoring chromosome resolution and segregation. We propose that Smc5/6 has an essential role in the removal of DNA-mediated linkages to prevent chromosome missegregation and aneuploidy.
Resumo:
Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.
Resumo:
DnaSP, DNA Sequence Polymorphism, is a software package for the analysis of nucleotide polymorphism from aligned DNA sequence data. DnaSP can estimate several measures of DNA sequence variation within and between populations (in noncoding, synonymous or nonsynonymous sites, or in various sorts of codon positions), as well as linkage disequilibrium, recombination, gene flow and gene conversion parameters. DnaSP can also carry out several tests of neutrality: Hudson, Kreitman and Aguadé (1987), Tajima (1989), McDonald and Kreitman (1991), Fu and Li (1993), and Fu (1997) tests. Additionally, DnaSP can estimate the confidence intervals of some test-statistics by the coalescent. The results of the analyses are displayed on tabular and graphic form.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
A photoactivated ruthenium(II) arene complex has been conjugated to two receptor-binding peptides, a dicarba analogue of octreotide and the Arg-Gly-Asp (RGD) tripeptide. These peptides can act as"tumor-targeting devices" since their receptors are overexpressed on the membranes of tumor cells. Both ruthenium-peptide conjugates are stable in aqueous solution in the dark, but upon irradiation with visible light, the pyridyl-derivatized peptides were selectively photodissociated from the ruthenium complex, as inferred by UV-vis and NMR spectroscopy. Importantly, the reactive aqua species generated from the conjugates, [(η6-p-cym)Ru(bpm)(H2O)]2+, reacted with the model DNA nucleobase 9-ethylguanine as well as with guanines of two DNA sequences, 5′dCATGGCT and 5′dAGCCATG. Interestingly, when irradiation was performed in the presence of the oligonucleotides, a new ruthenium adduct involving both guanines was formed as a consequence of the photodriven loss of p-cymene from the two monofunctional adducts. The release of the arene ligand and the formation of a ruthenated product with a multidentate binding mode might have important implications for the biological activity of such photoactivated ruthenium(II) arene complexes. Finally, photoreactions with the peptide-oligonucleotide hybrid, Phac-His-Gly-Met-linker-p5′dCATGGCT, also led to arene release and to guanine adducts, including a GG chelate. The lack of interaction with the peptide fragment confirms the preference of such organometallic ruthenium(II) complexes for guanine over other potential biological ligands, such as histidine or methionine amino acids.
Resumo:
Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.
Resumo:
Source/Description: p6a-l is a O.9 kb HindIII/BamHl genomic fragment subclone or cosmic cNX.6a in pUC13. cNX.6a was isolated from a non-methylated enriched library from the CMGT cell line Cll (1,2).
Resumo:
Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizably lower number of fermions in the presence of a deep optical lattice.
Resumo:
The nucleoid-associated protein H-NS is a global modulator of the expression of genes associated with adaptation to environmental changes. A variant of H-NS expressed in the R27 plasmid was previously shown to selectively modulate the expression of horizontally acquired genes, with minimal effects on core genes that are repressed by the chromosomal form of H-NS. Both H-NS proteins are formed by an oligomerization domain and a DNA-binding domain, which are connected by a linker that is highly flexible in the absence of DNA. We studied DNA binding by means of oligomer-forming chimeric proteins in which domains of the chromosomal and plasmidic variants are exchanged, as well as in monomeric truncated forms containing the DNA-binding domain and variable portions of the linker. Point mutations in the linker were also examined in full-length and truncated H-NS constructs. These experiments show that the linker region contributes to DNA binding affinity and that it is a main component of the distinct DNA binding properties of chromosomal and plasmidic H-NS. We propose that interactions between the linker and DNA limit the flexibility of the connection between H- NS oligomerization and DNA binding and provide an allosteric indirect readout mechanism to detect long- range distortions of DNA, thus enabling discrimination between core and horizontally acquired DNA.
Resumo:
Addition of a 50 mM mixture of l-arginine and l-glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE.
Resumo:
Mitochondrial DNA (mtDNA), a maternally inherited 16.6-Kb molecule crucial for energy production, is implicated in numerous human traits and disorders. It has been hypothesized that the presence of mutations in the mtDNA may contribute to the complex genetic basis of schizophreniadisease, due to the evidence of maternal inheritance and the presence of schizophrenia symptoms in patients affected of a mitochondrial disorder related to a mtDNA mutation. The present project aims to study the association of variants of mitochondrial DNA (mtDNA), and an increased risk of schizophrenia in a cohort of patients and controls from the same population. The entire mtDNA of 55 schizophrenia patients with an apparent maternal transmission of the disease and 38 controls was sequenced by Next Generation Sequencing (Ion Torrent PGM, Life Technologies) and compared to the reference sequence. The current method for establishing mtDNA haplotypes is Sanger sequencing, which is laborious, timeconsuming, and expensive. With the emergence of Next Generation Sequencing technologies, this sequencing process can be much more quickly and cost-efficiently. We have identified 14 variants that have not been previously reported. Two of them were missense variants: MTATP6 p.V113M and MTND5 p.F334L ,and also three variants encoding rRNA and one variant encoding tRNA. Not significant differences have been found in the number of variants between the two groups. We found that the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of the bioinformatics analysis and annotation step would be desirable to facilitate the application of NGS in mtDNA analysis.