79 resultados para Computer display
Resumo:
Objective: We propose and validate a computer aided system to measure three different mandibular indexes: cortical width, panoramic mandibular index and, mandibular alveolar bone resorption index. Study Design: Repeatability and reproducibility of the measurements are analyzed and compared to the manual estimation of the same indexes. Results: The proposed computerized system exhibits superior repeatability and reproducibility rates compared to standard manual methods. Moreover, the time required to perform the measurements using the proposed method is negligible compared to perform the measurements manually. Conclusions: We have proposed a very user friendly computerized method to measure three different morphometric mandibular indexes. From the results we can conclude that the system provides a practical manner to perform these measurements. It does not require an expert examiner and does not take more than 16 seconds per analysis. Thus, it may be suitable to diagnose osteoporosis using dental panoramic radiographs.
Resumo:
A sign of presence in virtual environments is that people respond to situations and events as if they were real, where response may be considered at many different levels, ranging from unconscious physiological responses through to overt behavior,emotions, and thoughts. In this paper we consider two responses that gave different indications of the onset of presence in a gradually forming environment. Two aspects of the response of people to an immersive virtual environment were recorded: their eye scanpath, and their skin conductance response (SCR). The scenario was formed over a period of 2 min, by introducing an increasing number of its polygons in random order in a head-tracked head-mounted display. For one group of experimental participants (n 8) the environment formed into one in which they found themselves standing on top of a 3 m high column. For a second group of participants (n 6) the environment was otherwise the same except that the column was only 1 cm high, so that they would be standing at normal ground level. For a third group of participants (n 14) the polygons never formed into a meaningful environment. The participants who stood on top of the tall column exhibited a significant decrease in entropy of the eye scanpath and an increase in the number of SCR by 99 s into the scenario, at a time when only 65% of the polygons had been displayed. The ground level participants exhibited a similar decrease in scanpath entropy, but not the increase in SCR. The random scenario grouping did not exhibit this decrease in eye scanpath entropy. A drop in scanpath entropy indicates that the environment had cohered into a meaningful perception. An increase in the rate of SCR indicates the perception of an aversive stimulus. These results suggest that on these two dimensions (scanpath entropy and rate of SCR) participants were responding realistically to the scenario shown in the virtual environment. In addition, the response occurred well before the entire scenario had been displayed, suggesting that once a set of minimal cues exists within a scenario,it is enough to form a meaningful perception. Moreover, at the level of the sympathetic nervous system, the participants who were standing on top of the column exhibited arousal as if their experience might be real. This is an important practical aspect of the concept of presence.
Resumo:
Monte Carlo (MC) simulations have been used to study the structure of an intermediate thermal phase of poly(R-octadecyl ç,D-glutamate). This is a comblike poly(ç-peptide) able to adopt a biphasic structure that has been described as a layered arrangement of backbone helical rods immersed in a paraffinic pool of polymethylene side chains. Simulations were performed at two different temperatures (348 and 363 K), both of them above the melting point of the paraffinic phase, using the configurational bias MC algorithm. Results indicate that layers are constituted by a side-by-side packing of 17/5 helices. The organization of the interlayer paraffinic region is described in atomistic terms by examining the torsional angles and the end-to-end distances for the octadecyl side chains. Comparison with previously reported comblike poly(â-peptide)s revealed significant differences in the organization of the alkyl side chains.
Resumo:
Recent studies have shown that a fake body part can be incorporated into human body representation through synchronous multisensory stimulation on the fake and corresponding real body part- the most famous example being the Rubber Hand Illusion. However, the extent to which gross asymmetries in the fake body can be assimilated remains unknown. Participants experienced, through a head-tracked stereo head-mounted display a virtual body coincident with their real body. There were 5 conditions in a between-groups experiment, with 10 participants per condition. In all conditions there was visuo-motor congruence between the real and virtual dominant arm. In an Incongruent condition (I), where the virtual arm length was equal to the real length, there was visuo-tactile incongruence. In four Congruent conditions there was visuo-tactile congruence, but the virtual arm lengths were either equal to (C1), double (C2), triple (C3) or quadruple (C4) the real ones. Questionnaire scores and defensive withdrawal movements in response to a threat showed that the overall level of ownership was high in both C1 and I, and there was no significant difference between these conditions. Additionally, participants experienced ownership over the virtual arm up to three times the length of the real one, and less strongly at four times the length. The illusion did decline, however, with the length of the virtual arm. In the C2-C4 conditions although a measure of proprioceptive drift positively correlated with virtual arm length, there was no correlation between the drift and ownership of the virtual arm, suggesting different underlying mechanisms between ownership and drift. Overall, these findings extend and enrich previous results that multisensory and sensorimotor information can reconstruct our perception of the body shape, size and symmetry even when this is not consistent with normal body proportions.
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.
Resumo:
Objective: We propose and validate a computer aided system to measure three different mandibular indexes: cortical width, panoramic mandibular index and, mandibular alveolar bone resorption index. Study Design: Repeatability and reproducibility of the measurements are analyzed and compared to the manual estimation of the same indexes. Results: The proposed computerized system exhibits superior repeatability and reproducibility rates compared to standard manual methods. Moreover, the time required to perform the measurements using the proposed method is negligible compared to perform the measurements manually. Conclusions: We have proposed a very user friendly computerized method to measure three different morphometric mandibular indexes. From the results we can conclude that the system provides a practical manner to perform these measurements. It does not require an expert examiner and does not take more than 16 seconds per analysis. Thus, it may be suitable to diagnose osteoporosis using dental panoramic radiographs
Resumo:
We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.
Resumo:
Objectives: The present study evaluates the reliability of the Radio Memory® software (Radio Memory; Belo Horizonte,Brasil.) on classifying lower third molars, analyzing intra- and interexaminer agreement of the results. Study Design: An observational, descriptive study of 280 lower third molars was made. The corresponding orthopantomographs were analyzed by two examiners using the Radio Memory® software. The exam was repeated 30 days after the first observation by each examiner. Both intra- and interexaminer agreement were determined using the SPSS v 12.0 software package for Windows (SPSS; Chicago, USA). Results: Intra- and interexaminer agreement was shown for both the Pell & Gregory and the Winter classifications, p<0.01, with 99% significant correlation between variables in all the cases. Conclusions: The use of Radio Memory® software for the classification of lower third molars is shown to be a valid alternative to the conventional method (direct evaluation on the orthopantomograph), for both clinical and investigational applications.
Resumo:
A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program
Resumo:
In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is oftenassociated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcificationsis performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcificationshave been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the senseof adding new features not only related to the shape
Resumo:
Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer"s disease. The type of multi‐targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health‐promoting extra virgin olive oil (EVOO), might constitute a new family of plant‐produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound"s structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS‐predicted BAS of substances based on thousands of"mechanism‐ effect" and"effect‐mechanism" relationships, we illuminate hypothesis‐generating pharmacological effects, mechanisms of action, and targets that might underlie the anti‐aging/anti‐cancer activities of the gerosuppressant EVOO oleuropeins.
Resumo:
A brain-computer interface (BCI) is a new communication channel between the human brain and a computer. Applications of BCI systems comprise the restoration of movements, communication and environmental control. In this study experiments were made that used the BCI system to control or to navigate in virtual environments (VE) just by thoughts. BCI experiments for navigation in VR were conducted so far with synchronous BCI and asynchronous BCI systems. The synchronous BCI analyzes the EEG patterns in a predefined time window and has 2 to 3 degrees of freedom.
Resumo:
Vivim en una era digital on cada vegada més les persones estem connectades a la xarxa, ja sigui a través del mòbil, ordinadors o altres dispositius. Actualment internet és un gran aparador i des de fa temps, les empreses han vist en aquest una manera de treure’n profit. És per això, junt amb el seu baix cost, que fa que qualsevol empresa disposi del seu propi espai a la xarxa. D’aquestes idees sorgeix el projecte de fer la web per AutoSuministres Motor. La principal funció de la web es donar-se a conèixer i ensenyar els seus productes, que en aquest cas, són autocaravanes i caravanes. Tot i així, la pàgina web contindrà un espai de reportatges on l’usuari podrà conèixer més a fons un model concret d’autocaravana o caravana i on també podrà demanar més informació mitjançant un formulari de contacte. Per tant, la pàgina web serà totalment administrable perquè els comercials puguin introduir els vehicles corresponents i l’usuari final pugui consultarlos correctament d’una manera fàcil i senzilla. Per tal de dur a terme aquesta web s’ha tingut en compte utilitzar eines de programació de distribució lliure com és el llenguatge PHP, la base de dades MySQL i jQuery.