83 resultados para Blog datasets
Resumo:
El objetivo final de este trabajo es estudiar las metodologías, técnicas y herramientas que faciliten el proceso de desarrollo de entornos web interactivos dentro de lo que se conoce como paradigma de la web 2.0. Inicialmente se analiza el estado del arte en cuanto a la accesibilidad de entornos digitales y se presentan las características y problemas específicos de accesibilidad de los sistemas de gestión de contenido (o entornos CMS). Posteriormente se describe una metodología para la ingeniería de la accesibilidad en entornos web 2.0. También se presenta un framework con la intención de sustentar la metodología propuesta con el mayor grado de automatización y disminución del esfuerzo requerido por parte de las personas encargadas de gestionar la evaluación de la accesibilidad. Finalmente, se presentan una serie de prototipos que estudian el resultado que ha de ofrecer el framework respecto a diversos casos de estudio referentes a entornos web 2.0 administrados mediante gestores de contenido, concretamente un entorno genérico, una wiki y un blog.
Resumo:
Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these factors ultimately depends on the G1 cyclin Cln3. Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3. Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.
Resumo:
SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s[3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the asso ciated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line.
Resumo:
Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
Resumo:
Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.
Resumo:
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
Resumo:
Several clinical studies have reported that EEG synchrony is affected by Alzheimer’s disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann–Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.
Resumo:
Gene filtering is a useful preprocessing technique often applied to microarray datasets. However, it is no common practice because clear guidelines are lacking and it bears the risk of excluding some potentially relevant genes. In this work, we propose to model microarray data as a mixture of two Gaussian distributions that will allow us to obtain an optimal filter threshold in terms of the gene expression level.
Resumo:
The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.
Resumo:
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Resumo:
We presented a bird-monitoring database inMediterranean landscapes (Catalonia, NE Spain) affected by wildfires and we evaluated: 1) the spatial and temporal variability in the bird community composition and 2) the influence of pre-fire habitat configuration in the composition of bird communities. The DINDIS database results fromthemonitoring of bird communities occupying all areas affected by large wildfires in Catalonia since 2000.We used bird surveys conducted from 2006 to 2009 and performed a principal components analysis to describe two main gradients of variation in the composition of bird communities, which were used as descriptors of bird communities in subsequent analyses. We then analysed the relationships of these community descriptors with bioclimatic regions within Catalonia, time since fire and pre-fire vegetation (forest or shrubland).We have conducted 1,918 bird surveys in 567 transects distributed in 56 burnt areas. Eight out of the twenty most common detected species have an unfavourable conservation status, most of them being associated to open-habitats. Both bird communities’ descriptors had a strong regional component and were related to pre-fire vegetation, and to a lesser extent to the time since fire.We came to the conclusion that the responses of bird communities to wildfires are heterogeneous, complex and context dependent. Large-scale monitoring datasets, such as DINDIS, might allow identifying factors acting at different spatial and temporal scales that affect the dynamics of species and communities, giving additional information on the causes under general trends observed using other monitoring systems
Resumo:
Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Resumo:
Although approximately 50% of Down Syndrome (DS) patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS). The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS). Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue) and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%), such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.
Resumo:
Crítico de la revista Quimera , y colaborador de ABCD, The Barcelona Review, o el blog After-post, Miguel Espigado (Salamanca, 1981) debutó el año pasado en el terreno de la creación literaria con El cielo de Pekín (Lengua de Trapo, 2011), una novela que encuentra sus raíces en experiencias vividas, observadas o reinventadas por el autor en la capital china, y que entronca con la línea posmoderna cultivada por autores como Agustín Fernández Mallo y otros integrantes de la denominada"Generación Nocilla".
Resumo:
The genetic impact associated to the Neolithic spread in Europe has been widely debated over the last 20 years. Within this context, ancient DNA studies have provided a more reliable picture by directly analyzing the protagonist populations at different regions in Europe. However, the lack of available data from the original Near Eastern farmers has limited the achieved conclusions, preventing the formulation of continental models of Neolithic expansion. Here we address this issue by presenting mitochondrial DNA data of the original Near-Eastern Neolithic communities with the aim of providing the adequate background for the interpretation of Neolithic genetic data from European samples. Sixty-three skeletons from the Pre Pottery Neolithic B (PPNB) sites of Tell Halula, Tell Ramad and Dja'de El Mughara dating between 8,700-6,600 cal. B.C. were analyzed, and 15 validated mitochondrial DNA profiles were recovered. In order to estimate the demographic contribution of the first farmers to both Central European and Western Mediterranean Neolithic cultures, haplotype and haplogroup diversities in the PPNB sample were compared using phylogeographic and population genetic analyses to available ancient DNA data from human remains belonging to the Linearbandkeramik-Alföldi Vonaldiszes Kerámia and Cardial/Epicardial cultures. We also searched for possible signatures of the original Neolithic expansion over the modern Near Eastern and South European genetic pools, and tried to infer possible routes of expansion by comparing the obtained results to a database of 60 modern populations from both regions. Comparisons performed among the 3 ancient datasets allowed us to identify K and N-derived mitochondrial DNA haplogroups as potential markers of the Neolithic expansion, whose genetic signature would have reached both the Iberian coasts and the Central European plain. Moreover, the observed genetic affinities between the PPNB samples and the modern populations of Cyprus and Crete seem to suggest that the Neolithic was first introduced into Europe through pioneer seafaring colonization.