69 resultados para Basis Sets
Resumo:
Este artículo presenta parte de los resultados de una investigación sobre la dinamización de las Tecnologías de la Información y la Comunicación (TIC) desde un centro de recursos pedagógico en las escuelas de su comarca, el Baix Ebre (Tarragona) durante los cursos escolares 2006-2007 y 2007-2008. Asimismo se enmarca en una tesis doctoral: «Disseny, implementació i avaluació del Pla d'explotació de recursos TIC als centres de primària del Baix Ebre» (Espuny, 2008). En líneas generales, se expone una propuesta sobre cómo dinamizar las TIC, basada en el análisis del papel de los agentes fundamentales en cualquier proceso de innovación, y con el objetivo de ser un referente en el diseño de un plan de incorporación de las TIC de forma gradual y metodológicamente significativa en la escuela. Se parte de un enfoque metodológico de investigación-acción y se utilizan técnicas de recogida e interpretación de datos mixta, cualitativa y cuantitativa (entrevistas, diarios, cuestionarios, demandas, opiniones, observaciones, reflexiones de expertos, etc.). A partir de ellas, nuestras conclusiones nos permiten reflexionar sobre el estado actual de las TIC en los centros y servir como base a las Administraciones educativas, en general, y a las diferentes comunidades educativas, en particular, en la definición de los cambios necesarios que nos permitan implementar exitosamente las TIC como un potente instrumento pedagógico que mejora la calidad del proceso de enseñanza-aprendizaje.
Resumo:
In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studied
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
Wide-range spectral coverage of blazar-type active galactic nuclei is of paramount importance for understanding the particle acceleration mechanisms assumed to take place in their jets. The Major Atmospheric Gamma Imaging Cerenkov (MAGIC) telescope participated in three multiwavelength (MWL) campaigns, observing the blazar Markarian (Mkn) 421 during the nights of April 28 and 29, 2006, and June 14, 2006. Aims. We analyzed the corresponding MAGIC very-high energy observations during 9 nights from April 22 to 30, 2006 and on June 14, 2006. We inferred light curves with sub-day resolution and night-by-night energy spectra. Methods. MAGIC detects γ-rays by observing extended air showers in the atmosphere. The obtained air-shower images were analyzed using the standard MAGIC analysis chain. Results. A strong γ-ray signal was detected from Mkn 421 on all observation nights. The flux (E > 250 GeV) varied on night-by-night basis between (0.92±0.11) × 10-10 cm-2 s-1 (0.57 Crab units) and (3.21±0.15) × 10-10 cm-2 s-1 (2.0 Crab units) in April 2006. There is a clear indication for intra-night variability with a doubling time of 36± min on the night of April 29, 2006, establishing once more rapid flux variability for this object. For all individual nights γ-ray spectra could be inferred, with power-law indices ranging from 1.66 to 2.47. We did not find statistically significant correlations between the spectral index and the flux state for individual nights. During the June 2006 campaign, a flux substantially lower than the one measured by the Whipple 10-m telescope four days later was found. Using a log-parabolic power law fit we deduced for some data sets the location of the spectral peak in the very-high energy regime. Our results confirm the indications of rising peak energy with increasing flux, as expected in leptonic acceleration models.
Resumo:
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.
Resumo:
Let $Q$ be a suitable real function on $C$. An $n$-Fekete set corresponding to $Q$ is a subset ${Z_{n1}},\dotsb, Z_{nn}}$ of $C$ which maximizes the expression $\Pi^n_i_{
Resumo:
We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.
Resumo:
We introduce a method for surface reconstruction from point sets that is able to cope with noise and outliers. First, a splat-based representation is computed from the point set. A robust local 3D RANSAC-based procedure is used to filter the point set for outliers, then a local jet surface - a low-degree surface approximation - is fitted to the inliers. Second, we extract the reconstructed surface in the form of a surface triangle mesh through Delaunay refinement. The Delaunay refinement meshing approach requires computing intersections between line segment queries and the surface to be meshed. In the present case, intersection queries are solved from the set of splats through a 1D RANSAC procedure
Resumo:
We present a participant study that compares biological data exploration tasks using volume renderings of laser confocal microscopy data across three environments that vary in level of immersion: a desktop, fishtank, and cave system. For the tasks, data, and visualization approach used in our study, we found that subjects qualitatively preferred and quantitatively performed better in the cave compared with the fishtank and desktop. Subjects performed real-world biological data analysis tasks that emphasized understanding spatial relationships including characterizing the general features in a volume, identifying colocated features, and reporting geometric relationships such as whether clusters of cells were coplanar. After analyzing data in each environment, subjects were asked to choose which environment they wanted to analyze additional data sets in - subjects uniformly selected the cave environment.