97 resultados para Bacterial evolutionary algorithm
Resumo:
Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.
Resumo:
Sacoglossan sea slugs (Mollusca: Opisthobranchia) are one of the few groups of specialist herbivores in the marine environment. Sacoglossans feed suctorially on the cell sap of macroalgae, from which they 'steal' chloroplasts (kleptoplasty) and deterrent substances (kleptochemistry), retaining intracellularly both host plastids and chemicals. The ingested chloroplasts continue to photosynthesize for periods ranging from a few hours or days up to 3 months in some species. Shelled, more primitive sacoglossans feed only on the siphonalean green algal genus Caulerpa, and they do not have functional kleptoplasty. The diet of sacoglossans has radiated out from this ancestral food. Among the shell-less Plakobranchidae (=Elysiidae), the more primitive species feed on other siphonales (families Derbesiaceae, Caulerpaceae, Bryopsidaceae and Codiaceae) and fix carbon, while the more 'advanced' species within the Plakobranchidae and Limapontioidae have a more broad dietary range. Most of these 'advanced' species are unable to fix carbon because the chloroplasts of their food algae are mechanically disrupted during ingestion. Mesoherbivores are likely to be eaten if they live on palatable seaweeds, their cryptic coloration and form not always keeping them safe from predators. Sacoglossans prefer to live on and eat chemically defended seaweeds, and they use ingested algal chemicals as deterrents of potential predators. The most ancestral shelled sacoglossans (Oxynoidae) and some Plakobranchidae such as Elysia translucens, Thuridilla hopei and Bosellia mimetica have developed a diet-derived chemical defense mechanism. Oxynoids and Thuridilla hopei are able to biomodify the algal metabolites. However, the Plakobranchidae Elysia timida and E. viridis, together with Limapontioidea species, are characterized by their ability to de novo synthesize polypropionate metabolites. A whole analysis of kleptoplasty and chemical defenses in sacoglossans may offer a better understanding of the ecology and evolution of these specialized opisthobranchs. In this paper we summarize some of the latest findings, related mainly to Mediterranean species, and offer a plausible evolutionary scenario based on the biological and chemical trends we can distinguish in them.
Resumo:
Les caractéristiques avançades de Delphinium L. subgèn. Delphinium (taxons anuals) son comparades amb les del subgèn. Delphinastrum (DC.) Wang i del subgèn. Oligophyllon Dimitrova (taxons perennes). La morfología floral mostra un intercanvi de funcions entre els petals laterals i els petals superiors i restructura de la inflorescencia de molts taxons anuals afavoreix un augment de les taxes de geitonogàmia-autogàmia. L'evolució dels cariotips és basada en una disminució de la longitud total dels cromosomes i en un increment del grau d'asimetria; el nombre cromosómic roman constant per a totes les especies anuals (2n = 16). Leficàcia de la dispersió de les especies anuals és mes gran que no pas la de les especies perennes, per causa d'un increment en la producció de granes i per l'augment de la flotabilitat, tant a l'aire com a l'aigua. D'altres caractéristiques adaptatives avançades son l'adquisició de noves defenses químiques i l'aparició d'un nou tipus embriogènic. Els nínxols ecologies del subgèn. Delphinium corresponen a habitats oberts i alterats, en comparado amb els habitats estables i relativament tancats dels subgéneros Delphinastrum i Oligophyllon. Es presenta una hipótesi global de les tendencies évolutives observades en anuals vs. perennes en connexió amb consideracions biogeogràfiques, així corn un resum taxonomic final.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Lipoxygenases are non-heme iron enzymes essential in eukaryotes, where they catalyze the formation of the fatty acid hydroperoxides that are required by a large diversity of biological and pathological processes. In prokaryotes, most of them totally lacking in polyunsaturated fatty acids, the possible biological roles oflipoxygenases have remained obscure. In this study, it is reported the crystallization of a lipoxygenase of Pseudomonas aeruginosa (Pa_LOX), the first from a prokaryote. High resolution data has been acquired which is expected to yield structural clues to the questions adressed. Besides, a preliminar phylogenetic analysis using 14 sequences has confirmed the existence of this subfamily of bacterial lipoxygenases, on one side, and a greater diversity than in the corresponding eukaryotic ones, on the other. Finally, an evolutionary study of bacteriallipoxygenases on the same set of lipoxygenases, show a selection pressure of a basically purifying or neutral character except for a single aminoacid, which would have been selected after a positive selection event.
Resumo:
Lipoxygenases are non-heme iron enzymes essential in eukaryotes, where they catalyze the formation of the fatty acid hydroperoxides that are required by a large diversity of biological and pathological processes. In prokaryotes, most of them totally lacking in polyunsaturated fatty acids, the possible biological roles oflipoxygenases have remained obscure. In this study, it is reported the crystallization of a lipoxygenase of Pseudomonas aeruginosa (Pa_LOX), the first from a prokaryote. High resolution data has been acquired which is expected to yield structural clues to the questions adressed. Besides, a preliminar phylogenetic analysis using 14 sequences has confirmed the existence of this subfamily of bacterial lipoxygenases, on one side, and a greater diversity than in the corresponding eukaryotic ones, on the other. Finally, an evolutionary study of bacteriallipoxygenases on the same set of lipoxygenases, show a selection pressure of a basically purifying or neutral character except for a single aminoacid, which would have been selected after a positive selection event.
Resumo:
BACKGROUND: In mammals it is well known that infections can lead to alterations in reproductive function. As part of the innate immune response, a number of cytokines and other immune factors is produced during bacterial infection or after treatment with lipopolysaccharide (LPS) and acts on the reproductive system. In fish, LPS can also induce an innate immune response but little is known about the activation of the immune system by LPS on reproduction in fish. Therefore, we conducted studies to examine the in vivo and in vitro effects of lipopolysaccharide (LPS) on the reproductive function of sexually mature female trout. METHODS: In saline- and LPS -injected brook trout, we measured the concentration of plasma steroids as well as the in vitro steroidogenic response (testosterone and 17alpha-hydroxyprogesterone) of ovarian follicles to luteinizing hormone (LH), the ability of 17alpha,20beta-dihydroxy-4-pregnen-3-one to induce germinal vesicle breakdown (GVBD) in vitro, and that of epinephrine to stimulate follicular contraction in vitro. We also examined the direct effects of LPS in vitro on steroid production, GVBD and contraction in brook trout ovarian follicles. The incidence of apoptosis was evaluated by TUNEL analysis. Furthermore, we examined the gene expression pattern in the ovary of saline- and LPS-injected rainbow trout by microarray analysis. RESULTS: LPS treatment in vivo did not affect plasma testosterone concentration or the basal in vitro production of steroids, although a small but significant potentiation of the effects of LH on testosterone production in vitro was observed in ovarian follicles from LPS-treated fish. In addition, LPS increased the plasma concentration of cortisol. LPS treatment in vitro did not affect the basal or LH-stimulated steroid production in brook trout ovarian follicles. In addition, we did not observe any effects of LPS in vivo or in vitro on GVBD or follicular contraction. Therefore, LPS did not appear to impair ovarian steroid production, oocyte final maturation or follicular contraction under the present experimental conditions. Interestingly, LPS administration in vivo induced apoptosis in follicular cells, an observation that correlated with changes in the expression of genes involved in apoptosis, as evidenced by microarray analysis. CONCLUSION: These results indicate that female trout are particularly resistant to an acute administration of LPS in terms of ovarian hormone responsiveness. However, LPS caused a marked increase in apoptosis in follicular cells, suggesting that the trout ovary could be sensitive to the pro-apoptotic effects of LPS-induced inflammatory cytokines.
Resumo:
The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (,63 mm) and exposed to a range of triclosan concentrations (control, 2 – 100 mg L21) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects
Resumo:
Visual perception is initiated in the photoreceptor cells of the retina via the phototransduction system.This system has shown marked evolution during mammalian divergence in such complex attributes as activation time and recovery time. We have performed a molecular evolutionary analysis of proteins involved in mammalianphototransduction in order to unravel how the action of natural selection has been distributed throughout thesystem to evolve such traits. We found selective pressures to be non-randomly distributed according to both a simple protein classification scheme and a protein-interaction network representation of the signaling pathway. Proteins which are topologically central in the signaling pathway, such as the G proteins, as well as retinoid cycle chaperones and proteins involved in photoreceptor cell-type determination, were found to be more constrained in their evolution. Proteins peripheral to the pathway, such as ion channels and exchangers, as well as the retinoid cycle enzymes, have experienced a relaxation of selective pressures. Furthermore, signals of positive selection were detected in two genes: the short-wave (blue) opsin (OPN1SW) in hominids and the rod-specific Na+/Ca2+,K+ ion exchanger (SLC24A1) in rodents. The functions of the proteins involved in phototransduction and the topology of the interactions between them have imposed non-random constraints on their evolution. Thus, in shaping or conserving system-level phototransduction traits, natural selection has targeted the underlying proteins in a concerted manner.
Differences in the evolutionary history of disease genes affected by dominant or recessive mutations
Resumo:
Background: Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance.Results: We examine differences in protein and coding sequence conservation between dominant and recessive human disease genes. Our analysis shows that disease genes affected by dominant mutations are more conserved than those affected by recessive mutations. This could be a consequence of the fact that recessive mutations remain hidden from selection while heterozygous. Furthermore, we employ functional annotation analysis and investigations into disease severity to support this hypothesis. Conclusion: This study elucidates important differences between dominantly- and recessively-acting disease genes in terms of protein and DNA sequence conservation, paralogy and essentiality. We propose that the division of disease genes by mode of inheritance will enhance both understanding of the disease process and prediction of candidate disease genes in the future.
Resumo:
Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.
Resumo:
Next-generation sequencing techniques such as exome sequencing can successfully detect all genetic variants in a human exome and it has been useful together with the implementation of variant filters to identify causing-disease mutations. Two filters aremainly used for the mutations identification: low allele frequency and the computational annotation of the genetic variant. Bioinformatic tools to predict the effect of a givenvariant may have errors due to the existing bias in databases and sometimes show a limited coincidence among them. Advances in functional and comparative genomics are needed in order to properly annotate these variants.The goal of this study is to: first, functionally annotate Common Variable Immunodeficiency disease (CVID) variants with the available bioinformatic methods in order to assess the reliability of these strategies. Sencondly, as the development of new methods to reduce the number of candidate genetic variants is an active and necessary field of research, we are exploring the utility of gene function information at organism level as a filter for rare disease genes identification. Recently, it has been proposed that only 10-15% of human genes are essential and therefore we would expect that severe rare diseases are mostly caused by mutations on them. Our goal is to determine whether or not these rare and severe diseases are caused by deleterious mutations in these essential genes. If this hypothesis were true, taking into account essential genes as a filter would be an interesting parameter to identify causingdisease mutations.
Resumo:
Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease. Results: In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data. Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.