89 resultados para Analytical modelling
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
Postprint (published version)
Resumo:
This paper describes the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/CA converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM). The B2B is a variable structure system (VSS), due to presence of control-actuated switches: however, from a modelling simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presented and, using a power-preserving interconnection, the Hamiltonian description of the whole system is obtained; detailed bond graphs of all subsystems and the complete system are also provided. Using passivity-based controllers computed in the Hamiltonian formalism for both subsystems, the whole model is simulated; simulations are run to rest the correctness and efficiency of the Hamiltonian network modelling approach used in this work.
Resumo:
In this paper, we investigate the average andoutage performance of spatial multiplexing multiple-input multiple-output (MIMO) systems with channel state information at both sides of the link. Such systems result, for example, from exploiting the channel eigenmodes in multiantenna systems. Dueto the complexity of obtaining the exact expression for the average bit error rate (BER) and the outage probability, we deriveapproximations in the high signal-to-noise ratio (SNR) regime assuming an uncorrelated Rayleigh flat-fading channel. Moreexactly, capitalizing on previous work by Wang and Giannakis, the average BER and outage probability versus SNR curves ofspatial multiplexing MIMO systems are characterized in terms of two key parameters: the array gain and the diversity gain. Finally, these results are applied to analyze the performance of a variety of linear MIMO transceiver designs available in the literature.
Resumo:
Tourists do not follow random behavior in heritage cities, but they are consciously or unconsciously guided by socially constructed itineraries. This article studies the shaping of these itineraries in a heritage city (Girona), using the direct observation methodology during the visit (following the tourists from a prudent distance and gathering all the information about their visits) and the conventional questionnaire at the end of the visit. It also establishes which the sociodemographic, environmental and informative factors are that explain this behavior. The simultaneous use of the observation method and a questionnaire was found to be a useful technique for analyzing tourists' behavior and the factors that explain this behavior
Resumo:
Existing digital rights management (DRM) systems, initiatives like Creative Commons or research works as some digital rights ontologies provide limited support for content value chains modelling and management. This is becoming a critical issue as content markets start to profit from the possibilities of digital networks and the World Wide Web. The objective is to support the whole copyrighted content value chain across enterprise or business niches boundaries. Our proposal provides a framework that accommodates copyright law and a rich creation model in order to cope with all the creation life cycle stages. The dynamic aspects of value chains are modelled using a hybrid approach that combines ontology-based and rule-based mechanisms. The ontology implementation is based on Web Ontology Language and Description Logic (OWL-DL) reasoners, are directly used for license checking. On the other hand, for more complex aspects of the dynamics of content value chains, rule languages are the choice.
Resumo:
This study was carried to develop functions that could explain the growth of Oxalis latifolia, in both early stages and throughout the season, contributing to the improvement of its cultural control. Bulbs of the Cornwall form of O. latifolia were buried at 1 and 8 cm in March 1999 and 2000. Samples were destructive at fixed times, and at each time the corresponding BBCH scale codes as well as the absolute number of growing and adult leaves were noted. Using the absolute number of adult leaves (transformed to percentages), a Gaussian curve of three parameters that explains the growth during the season (R2=0.9355) was developed. The BBCH scale permitted the fit of two regression lines that were accurately adjusted for each burial depth (R2=0.9969 and R2=0.9930 respectively for 1 and 8 cm). The best moment for an early defoliation in Northern Spain could be calculated with these regression lines, and was found to be the second week of May. In addition, it was observed that a burial depth of 8 cm does not affect the growing pattern of the weed, but it affects the number of leaves they produce, which decreases to less than a half of those produced at 1 cm.
Resumo:
Para preservar la biodiversidad de los ecosistemas forestales de la Europa mediterránea en escenarios actuales y futuros de cambio global mediante una gestión forestal sostenible es necesario determinar cómo influye el medio ambiente y las propias características de los bosques sobre la biodiversidad que éstos albergan. Con este propósito, se analizó la influencia de diferentes factores ambientales y de estructura y composición del bosque sobre la riqueza de aves forestales a escala 1 × 1 km en Cataluña (NE de España). Se construyeron modelos univariantes y multivariantes de redes neuronales para respectivamente explorar la respuesta individual a las variables y obtener un modelo parsimonioso (ecológicamente interpretable) y preciso. La superficie de bosque (con una fracción de cabida cubierta superior a 5%), la fracción de cabida cubierta media, la temperatura anual y la precipitación estival medias fueron los mejores predictores de la riqueza de aves forestales. La red neuronal multivariante obtenida tuvo una buena capacidad de generalización salvo en las localidades con una mayor riqueza. Además, los bosques con diferentes grados de apertura del dosel arbóreo, más maduros y más diversos en cuanto a su composición de especies arbóreas se asociaron de forma positiva con una mayor riqueza de aves forestales. Finalmente, se proporcionan directrices de gestión para la planificación forestal que permitan promover la diversidad ornítica en esta región de la Europa mediterránea.
Resumo:
An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.
Resumo:
The goal of this work is to try to create a statistical model, based only on easily computable parameters from the CSP problem to predict runtime behaviour of the solving algorithms, and let us choose the best algorithm to solve the problem. Although it seems that the obvious choice should be MAC, experimental results obtained so far show, that with big numbers of variables, other algorithms perfom much better, specially for hard problems in the transition phase.
Resumo:
We present a detailed evaluation of the seasonal performance of the Community Multiscale Air Quality (CMAQ) modelling system and the PSU/NCAR meteorological model coupled to a new Numerical Emission Model for Air Quality (MNEQA). The combined system simulates air quality at a fine resolution (3 km as horizontal resolution and 1 h as temporal resolution) in north-eastern Spain, where problems of ozone pollution are frequent. An extensive database compiled over two periods, from May to September 2009 and 2010, is used to evaluate meteorological simulations and chemical outputs. Our results indicate that the model accurately reproduces hourly and 1-h and 8-h maximum ozone surface concentrations measured at the air quality stations, as statistical values fall within the EPA and EU recommendations. However, to further improve forecast accuracy, three simple bias-adjustment techniques mean subtraction (MS), ratio adjustment (RA), and hybrid forecast (HF) based on 10 days of available comparisons are applied. The results show that the MS technique performed better than RA or HF, although all the bias-adjustment techniques significantly reduce the systematic errors in ozone forecasts.
Resumo:
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Resumo:
The classical theory of collision induced emission (CIE) from pairs of dissimilar rare gas atoms was developed in Paper I [D. Reguera and G. Birnbaum, J. Chem. Phys. 125, 184304 (2006)] from a knowledge of the straight line collision trajectory and the assumption that the magnitude of the dipole could be represented by an exponential function of the inter-nuclear distance. This theory is extended here to deal with other functional forms of the induced dipole as revealed by ab initio calculations. Accurate analytical expression for the CIE can be obtained by least square fitting of the ab initio values of the dipole as a function of inter-atomic separation using a sum of exponentials and then proceeding as in Paper I. However, we also show how the multi-exponential fit can be replaced by a simpler fit using only two analytic functions. Our analysis is applied to the polar molecules HF and HBr. Unlike the rare gas atoms considered previously, these atomic pairs form stable bound diatomic molecules. We show that, interestingly, the spectra of these reactive molecules are characterized by the presence of multiple peaks. We also discuss the CIE arising from half collisions in excited electronic states, which in principle could be probed in photo-dissociation experiments.
Resumo:
Chemical analysis is a well-established procedure for the provenancing of archaeological ceramics. Various analytical techniques are routinely used and large amounts of data have been accumulated so far in data banks. However, in order to exchange results obtained by different laboratories, the respective analytical procedures need to be tested in terms of their inter-comparability. In this study, the schemes of analysis used in four laboratories that are involved in archaeological pottery studies on a routine basis were compared. The techniques investigated were neutron activation analysis (NAA), X-ray fluorescence analysis (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). For this comparison series of measurements on different geological standard reference materials (SRM) were carried out and the results were statistically evaluated. An attempt was also made towards the establishment of calibration factors between pairs of analytical setups in order to smooth the systematic differences among the results.