134 resultados para 020203 Particle Physics


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a classical nonrelativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the noncommutative structure of the model. Under double-dimensional reduction the model reduces to the exotic nonrelativistic particle in 2+1 dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a family of 3-qubit states to which any arbitrary state can be depolarized. We fully classify those states with respect to their separability and distillability properties. This provides a sufficient condition for nonseparability and distillability for arbitrary states. We generalize our results to N-particle states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical study of classical particles diffusing on a solid surface. The particles motion is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface interaction is described by a periodic or a random two-dimensional potential. The model leads to a rich variety of different transport regimes, some of which correspond to anomalous diffusion such as has recently been observed in experiments and Monte Carlo simulations. We show that this anomalous behavior is controlled by the friction coefficient and stress that it emerges naturally in a system described by ordinary canonical Maxwell-Boltzmann statistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles moving on crystalline surfaces and driven by external forces or flow fields can acquire velocities along directions that deviate from that of the external force. This effect depends upon the characteristics of the particles, most notably particle size or particle index of refraction, and can therefore be (and has been) used to sort different particles. We introduce a simple model for particles subject to thermal fluctuations and moving in appropriate potential landscapes. Numerical results are compared to recent experiments on landscapes produced with holographic optical tweezers and microfabricated technology. Our approach clarifies the relevance of different parameters, the direction and magnitude of the external force, particle size, and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology, in the framework of a SUL(2)UY(1) gauge-invariant effective Lagrangian. Our results, based on the data sample already collected by the collaborations at Fermilab Tevatron, show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all blind operators are of the same magnitude, we are also able to impose more restrictive bounds on the anomalous vector-boson triple couplings than the present limit from double gauge boson production at the Tevatron collider.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monopole (L=0) and quadrupole (L=2) strength distributions in normal 3He clusters are calculated within the random-phase approximation. We use a phenomenological, zero-range 3-3He interaction to generate the Hartree-Fock single-particle spectrum and the residual particle-hole interaction. The evolution of the collective modes with the number of atoms in the cluster is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion self-energy. The in-medium spectral densities of the K and (K) over bar mesons are obtained from a chiral unitary approach in coupled channels that incorporates the S and P waves of the kaon-nucleon interaction. The pion self-energy is determined from the P-wave coupling to particle-hole and Delta-hole excitations, modified by short-range correlations. The sum rules for the lower-energy weights are fulfilled satisfactorily and reflect the contributions from the different quasiparticle and collective modes of the meson spectral function. We discuss the sensitivity of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulas for the density of states and the quantum depletion of the condensate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Brownian pump of particles powered by a stochastic flashing ratchet mechanism is studied. The pumping device is embedded in a finite region and bounded by particle reservoirs. In the steady state, we exactly calculate the spatial density profile, the concentration ratio between both reservoirs and the particle flux. We propose a simulation framework for the consistent evaluation of such observable quantities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.