155 resultados para transfer problem
Resumo:
Recently, the surprising result that ab initio calculations on benzene and other planar arenes at correlated MP2, MP3, configuration interaction with singles and doubles (CISD), and coupled cluster with singles and doubles levels of theory using standard Pople’s basis sets yield nonplanar minima has been reported. The planar optimized structures turn out to be transition states presenting one or more large imaginary frequencies, whereas single-determinant-based methods lead to the expected planar minima and no imaginary frequencies. It has been suggested that such anomalous behavior can be originated by two-electron basis set incompleteness error. In this work, we show that the reported pitfalls can be interpreted in terms of intramolecular basis set superposition error (BSSE) effects, mostly between the C–H moieties constituting the arenes. We have carried out counterpoise-corrected optimizations and frequency calculations at the Hartree–Fock, B3LYP, MP2, and CISD levels of theory with several basis sets for a number of arenes. In all cases, correcting for intramolecular BSSE fixes the anomalous behavior of the correlated methods, whereas no significant differences are observed in the single-determinant case. Consequently, all systems studied are planar at all levels of theory. The effect of different intramolecular fragment definitions and the particular case of charged species, namely, cyclopentadienyl and indenyl anions, respectively, are also discussed
Resumo:
Estudi realitzat a partir d’una estada al Institut de Génétique Moléculaire de Montpellier, França, entre 2010 i 2012. En aquest projecte s’ha avaluat les avantatges dels vectors adenovirals canins tipus 2 (CAV2) com a vectors de transferència gènica al sistema nerviós central (SNC) en un model primat no-humà i en un model caní del síndrome de Sly (mucopolisacaridosis tipus 7, MPS VII), malaltia monogènica que cursa amb neurodegeneració. En una primera part del projecte s’ha avaluat la biodistribució, l’eficàcia i la durada de l’expressió del transgen en un model primat no humà, (Microcebus murinus). Com ha vector s’ha utilitzat un CAV2 de primera generació que expressa la proteïna verda fluorescent (CAVGFP). Els resultats aportats en aquesta memòria demostren que en primats no humans, com en d’altres espècies testades anteriorment per l’equip de l’EJ Kremer, la injecció intracerebral de CAV2 resulta en una extensa transducció del SNC, siguent les neurones i els precursors neuronals les cèl•lules preferencialment transduïdes. Els vectors canins, servint-se de vesícules intracel•lulars són transportats, majoritàriament, des de les sinapsis cap al soma neuronal, aquest transport intracel•lular permet una extensa transducció del SNC a partir d’una única injecció intracerebral dels vectors virals. En una segona part d’aquest projecte s’ha avaluat l’ús terapèutic dels CAV2. S’ha injectat un vector helper-dependent que expressa el gen la b-glucuronidasa i el gen de la proteïna verda fluorescent (HD-RIGIE), en el SNC del model caní del síndrome de Sly (MPS VII). La biodistribució i la eficàcia terapèutica han estat avaluades. Els nivells d’activitat enzimàtica en animals malalts injectats amb el vector terapèutic va arribar a valors similars als dels animals no afectes. A més a més s’ha observat una reducció en la quantitat dels GAGs acumulats en les cèl•lules dels animals malalts tractats amb el vector terapèutic, demostrant la potencialitat terapèutica dels CAV2 per a malalties que afecten al SNC. Els resultats aportats en aquest treball ens permeten dir que els CAV2 són unes bones eines terapèutiques per al tractament de malalties que afecten al SNC.
Resumo:
Aquest treball és una revisió d'alguns sistemes de Traducció Automàtica que segueixen l'estratègia de Transfer i fan servir estructures de trets com a eina de representació. El treball s'integra dins el projecte MLAP-9315, projecte que investiga la reutilització de les especificacions lingüístiques del projecte EUROTRA per estàndards industrials.
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
We start with a generalization of the well-known three-door problem:the n-door problem. The solution of this new problem leads us toa beautiful representation system for real numbers in (0,1] as alternated series, known in the literature as Pierce expansions. A closer look to Pierce expansions will take us to some metrical properties of sets defined through the Pierce expansions of its elements. Finally, these metrical properties will enable us to present 'strange' sets, similar to the classical Cantor set.
Resumo:
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.
Resumo:
The problems arising in commercial distribution are complex and involve several players and decision levels. One important decision is relatedwith the design of the routes to distribute the products, in an efficient and inexpensive way.This article deals with a complex vehicle routing problem that can beseen as a new extension of the basic vehicle routing problem. The proposed model is a multi-objective combinatorial optimization problemthat considers three objectives and multiple periods, which models in a closer way the real distribution problems. The first objective is costminimization, the second is balancing work levels and the third is amarketing objective. An application of the model on a small example, with5 clients and 3 days, is presented. The results of the model show the complexity of solving multi-objective combinatorial optimization problems and the contradiction between the several distribution management objective.
Resumo:
We obtain minimax lower bounds on the regret for the classicaltwo--armed bandit problem. We provide a finite--sample minimax version of the well--known log $n$ asymptotic lower bound of Lai and Robbins. Also, in contrast to the log $n$ asymptotic results on the regret, we show that the minimax regret is achieved by mere random guessing under fairly mild conditions on the set of allowable configurations of the two arms. That is, we show that for {\sl every} allocation rule and for {\sl every} $n$, there is a configuration such that the regret at time $n$ is at least 1 -- $\epsilon$ times the regret of random guessing, where $\epsilon$ is any small positive constant.