104 resultados para torn
Resumo:
The propagator of a relativistic spinning particle is calculated using the Becchi-Rouet-Stora-Tyutin-(BRST)-invariant path-integral formalism of Fradkin and Vilkovisky. The spinless case is considered as an introduction to the formalism.
Resumo:
The string model with N=2 world-sheet supersymmetry is approached via ghosts, Becchi-Rouet-Stora-Tyutin cohomology, and bosonization. Some amplitudes involving massless scalars and vectors are computed at the tree level. The constraints of locality on the spectrum are analyzed. An attempt is made to "decompactify" the model into a four-dimensional theory.
Resumo:
The properties of a proposed model of N point particles in direct interaction are considered in the limit of small velocities. It is shown that, in this limit, time correlations cancel out and that Newtonian dynamics is recovered for the system in a natural way.
Resumo:
A modified Bargmann-Wigner method is used to derive (6s + 1)-component wave equations. The relation between different forms of these equations is shown.
Resumo:
We study the Hamiltonian and Lagrangian constraints of the Polyakov string. The gauge fixing at the Hamiltonian and Lagrangian level is also studied.
Resumo:
The Newton-Hooke algebras in d dimensions are constructed as contractions of dS(AdS) algebras. Nonrelativistic brane actions are WZ terms of these Newton-Hooke algebras. The NH algebras appear also as subalgebras of multitemporal relativistic conformal algebras, SO(d+1,p+2). We construct generalizations of pp-wave metrics from these algebras.
Resumo:
We construct a classical nonrelativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the noncommutative structure of the model. Under double-dimensional reduction the model reduces to the exotic nonrelativistic particle in 2+1 dimensions.
Resumo:
The classical trajectory and spin precessions of Bargmann, Michel, and Telegdi are deduced from a pseudoclassical model of a relativistic spin-(1/2) particle. The corresponding deduction from a non- relativistic model is also given.
Resumo:
The pure classical content of a pseudoclassical nonrelativistic model of a spinning particle is studied. The only physical meaningful world line is the one without "Zitterbewegung." Interactions with external electromagnetic fields are also studied.
Resumo:
Dirac's constraint Hamiltonian formalism is used to construct a gauge-invariant action for the massive spin-one and -two fields.
Resumo:
A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.
Resumo:
A pseudoclassical model for a relativistic spinning particle is studied. The only physically meaningful world line is the one without Zitterbewegung. The Poincar realization for this situation is constructed.
Resumo:
We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In the presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or looplike) algebra. Near horizon (antideSitter) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2D interacting field theories with infinite conformal symmetry.
Resumo:
In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincar algebra. The usual contraction of the Poincar to the Galilei group is seen to be equivalent to a certain coordinate transformation.