50 resultados para replicazione ottimistica, eventual consistency
Resumo:
This paper presents a new registration algorithm, called Temporal Di eomorphic Free Form Deformation (TDFFD), and its application to motion and strain quanti cation from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity eld as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement eld is then recovered through forward Eulerian integration of the non-stationary velocity eld. The strain tensor iscomputed locally using the spatial derivatives of the reconstructed displacement eld. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared di erences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on theincompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, bothon displacement and velocity elds, on a set of synthetic 3D US images with di erent noise levels. TDFFDshowed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFDwas applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, theimprovement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quanti ed by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Resumo:
The objective of PANACEA is to build a factory of LRs that automates the stages involved in the acquisition, production, updating and maintenance of LRs required by MT systems and by other applications based on language technologies, and simplifies eventual issues regarding intellectual property rights. This automation will cut down the cost, time and human effort significantly. These reductions of costs and time are the only way to guarantee the continuous supply of LRs that MT and other language technologies will be demanding in the multilingual Europe.
Resumo:
In monetary unions, monetary policy is typically made by delegates of the member countries. This procedure raises the possibility of strategic delegation - that countries may choose the types of delegates to influence outcomes in their favor. We show that without commitment in monetary policy, strategic delegation arises if and only if three conditions are met: shocks affecting individual countries are not perfectly correlated, risk-sharing across countries is imperfect, and the Phillips Curve is nonlinear. Moreover, inflation rates are inefficiently high. We argue that ways of solving the commitment problem, including the emphasis on price stability in the agreements constituting the European Union are especially valuable when strategic delegation is a problem.
Resumo:
We study the effects of nominal debt on the optimal sequential choice of monetary policy. When the stock of debt is nominal, the incentive to generate unanticipated inflation increases the cost of the outstanding debt even if no unanticipated inflation episodes occur in equilibrium. Without full commitment, the optimal sequential policy is to deplete the outstanding stock of debt progressively until these extra costs disappear. Nominal debt is therefore a burden on monetary policy, not only because it must be serviced, but also because it creates a time inconsistency problem that distorts interest rates. The introduction of alternative forms of taxation may lessen this burden, if there is enough commtiment to fiscal policy. If there is full commitment to an optimal fiscal policy, then the resulting monetary policy is the Friedman rule of zero nominal interest rates.