58 resultados para neutron-halo nuclei
Resumo:
Majolica pottery is one of the most characteristic tableware produced during the Medieval and Renaissance periods. Majolica technology was introduced to the Iberian Peninsula by Islamic artisans during Medieval times, and its production and popularity rapidly spread throughout Spain and eventually to other locations in Europe and the Americas. The prestige and importance of Spanish majolica was very high. Consequently, this ware was imported profusely to the Americas during the Spanish Colonial period. Nowadays, Majolica pottery serves as an important horizon marker at Spanish colonial sites. A preliminary study of Spanish-produced majolica was conducted on a set of 246 samples from the 12 primary majolica production centers on the Iberian Peninsula. The samples were analyzed by neutron activation analysis (NAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination between different production centers. In some cases, our data allow one to distinguish amongst shards coming from the same production location suggesting different workshops or group of workshops were responsible for production of this pre-industrial pottery.
Resumo:
Polychlorinated trityl radicals bearing carboxylate substituents are water soluble persistent radicals that can be used for dynamic nuclear polarization. In contrast to other trityl radicals, the polarization mechanism differs from the classical solid effect. DFT calculations performed to rationalize this behaviour support the hypothesis that polarization is transferred from the unpaired electron to chlorine nuclei and from these to carbon by spin diffusion. The marked differences observed between neutral and anionic forms of the radical will be discussed.
Resumo:
The probability for a halo coronal mass ejection (CME) to be geoeffective is assumed to be higher the closer the CME launch site is located to the solar central meridian. However, events far from the central meridian may produce severe geomagnetic storms, like the case in April 2000. In this work, we study the possible geoeffectiveness of full halo CMEs with the source region situated at solar limb. For this task, we select all limb full halo (LFH) CMEs that occurred during solar cycle 23, and we search for signatures of geoeffectiveness between 1 and 5 days after the first appearance of each CME in the LASCO C2 field of view. When signatures of geomagnetic activity are observed in the selected time window, interplanetary data are carefully analyzed in order to look for the cause of the geomagnetic disturbance. Finally, a possible association between geoeffective interplanetary signatures and every LFH CME in solar cycle 23 is checked in order to decide on the CME's geoeffectiveness. After a detailed analysis of solar, interplanetary, and geomagnetic data, we conclude that of the 25 investigated events, there are only four geoeffective LFH CMEs, all coming from the west limb. The geoeffectiveness of these events seems to be moderate, turning to intense in two of them as a result of cumulative effects from previous mass ejections. We conclude that ejections from solar locations close to the west limb should be considered in space weather, at least as sources of moderate disturbances.
Resumo:
Preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol was carried out by the enzymatic hydrolysis of halohydrin palmitates using biocatalysts. Halohydrin palmitates were prepared by various methods from palmitic acid and 1,2-octanediol. A tandem hydrolysis was carried out using lipases from Candida antarctica (Novozym® 435), Rhizomucor miehei (Lipozyme IM), and “resting cells” from a Rhizopus oryzae strain that was not mycotoxigenic. The influence of the enzyme and the reaction medium on the selective hydrolysis of isomeric mixtures of halohydrin esters is described. Novozym® 435 allowed preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol after 1–3 h ofreaction at 40 °C in [BMIM][PF6].
Resumo:
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.
Resumo:
The saturation properties of neutron-rich matter are investigated in a relativistic mean-field formalism using two accurately calibrated models: NL3 and FSUGold. The saturation properties density, binding energy per nucleon, and incompressibility coefficient are calculated as a function of the neutron-proton asymmetry α≡(N-Z)/A to all orders in α. Good agreement (at the 10% level or better) is found between these numerical calculations and analytic expansions that are given in terms of a handful of bulk parameters determined at saturation density. Using insights developed from the analytic approach and a general expression for the incompressibility coefficient of infinite neutron-rich matter, i.e., K0(α)=K0+Kτα2+ , we construct a hybrid model with values for K0 and Kτ as suggested by recent experimental findings. Whereas the hybrid model provides a better description of the measured distribution of isoscalar monopole strength in the Sn isotopes relative to both NL3 and FSUGold, it significantly underestimates the distribution of strength in 208Pb. Thus, we conclude that the incompressibility coefficient of neutron-rich matter remains an important open problem.
Resumo:
The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.
Resumo:
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.
Resumo:
A precise determination of the neutron skin thickness of a heavy nucleus sets a basic constraint on the nuclear symmetry energy (the neutron skin thickness is the difference of the neutron and proton rms radii of the nucleus). The parity radius experiment (PREX) may achieve it by electroweak parity-violating electron scattering (PVES) on 208Pb. We investigate PVES in nuclear mean field approach to allow the accurate extraction of the neutron skin thickness of 208Pb from the parity-violating asymmetry probed in the experiment. We demonstrate a high linear correlation between the parity-violating asymmetry and the neutron skin thickness in successful mean field forces as the best means to constrain the neutron skin of 208Pb from PREX, without assumptions on the neutron density shape. Continuation of the experiment with higher precision in the parity-violating asymmetry is motivated since the present method can support it to constrain the density slope of the nuclear symmetry energy to new accuracy.
Resumo:
Majolica pottery was the most characteristic tableware produced in Spain during the Medieval and Renaissance periods. A study of the three main production centers in the historical region of Aragon during Middle Ages and Renaissance was conducted on a set of 71 samples. The samples were analyzed by instrumental neutron activation analysis (INAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination among different production centers allowing a reliable provenance attribution of ceramic sherds from the Aragonese workshops.
Resumo:
Electron scattering on unstable nuclei is planned in future facilities of the GSI and RIKEN upgrades. Motivated by this fact, we study theoretical predictions for elastic electron scattering in the N=82, N=50, and N=14 isotonic chains from very proton-deficient to very proton-rich isotones. We compute the scattering observables by performing Dirac partial-wave calculations. The charge density of the nucleus is obtained with a covariant nuclear mean-field model that accounts for the low-energy electromagnetic structure of the nucleon. For the discussion of the dependence of scattering observables at low-momentum transfer on the gross properties of the charge density, we fit Helm model distributions to the self-consistent mean-field densities. We find that the changes shown by the electric charge form factor along each isotonic chain are strongly correlated with the underlying proton shell structure of the isotones. We conclude that elastic electron scattering experiments on isotones can provide valuable information about the filling order and occupation of the single-particle levels of protons.
Resumo:
We analyze the influence of the single-particle structure on the neutron density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence shell neutrons on the tail of the neutron density distribution is discussed.
Resumo:
We present an Analytic Model of Intergalactic-medium and GAlaxy (AMIGA) evolution since the dark ages. AMIGA is in the spirit of the popular semi-analytic models of galaxy formation, although it does not use halo merger trees but interpolates halo properties in grids that are progressively built. This strategy is less memory-demanding and allows one to start modeling at sufficiently high redshifts and low halo masses to have trivial boundary conditions. The number of free parameters is minimized by making a causal connection between physical processes usually treated as independent of each other, which leads to more reliable predictions. However, the strongest points of AMIGA are the following: (1) the inclusion of molecular cooling and metal-poor, population III (Pop III) stars with the most dramatic feedback and (2) accurate follow up of the temperature and volume filling factor of neutral, singly ionized, and doubly ionized regions, taking into account the distinct halo mass functions in those environments. We find the following general results. Massive Pop III stars determine the intergalactic medium metallicity and temperature, and the growth of spheroids and disks is self-regulated by that of massive black holes (MBHs) developed from the remnants of those stars. However, the properties of normal galaxies and active galactic nuclei appear to be quite insensitive to Pop III star properties due to the much higher yield of ordinary stars compared to Pop III stars and the dramatic growth of MBHs when normal galaxies begin to develop, which cause the memory loss of the initial conditions.