82 resultados para mechanical stability
Resumo:
Background: Quality control procedures vary considerably among the providers of equipment for home mechanical ventilation (HMV). Methods: A multicentre quality control survey of HMV was performed at the home of 300 patients included in the HMV programmes of four hospitals in Barcelona. It consisted of three steps: (1) the prescribed ventilation settings, the actual settings in the ventilator control panel, and the actual performance of the ventilator measured at home were compared; (2) the different ventilator alarms were tested; and (3) the effect of differences between the prescribed settings and the actual performance of the ventilator on non-programmed readmissions of the patient was determined. Results: Considerable differences were found between actual, set, and prescribed values of ventilator variables; these differences were similar in volume and pressure preset ventilators. The percentage of patients with a discrepancy between the prescribed and actual measured main ventilator variable (minute ventilation or inspiratory pressure) of more than 20% and 30% was 13% and 4%, respectively. The number of ventilators with built in alarms for power off, disconnection, or obstruction was 225, 280 and 157, respectively. These alarms did not work in two (0.9%), 52 (18.6%) and eight (5.1%) ventilators, respectively. The number of non-programmed hospital readmissions in the year before the study did not correlate with the index of ventilator error. Conclusions: This study illustrates the current limitations of the quality control of HMV and suggests that improvements should be made to ensure adequate ventilator settings and correct ventilator performance and ventilator alarm operation.
Resumo:
The aim of this work was to develop a low-cost circuit for real-time analog computation of the respiratory mechanical impedance in sleep studies. The practical performance of the circuit was tested in six patients with obstructive sleep apnea. The impedance signal provided by the analog circuit was compared with the impedance calculated simultaneously with a conventional computerized system. We concluded that the low-cost analog circuit developed could be a useful tool for facilitating the real-time assessment of airway obstruction in routine sleep studies.
Resumo:
Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.
Resumo:
We investigated the rheological properties of living human airway smooth muscle cells in culture and monitored the changes in rheological properties induced by exogenous stimuli. We oscillated small magnetic microbeads bound specifically to integrin receptors and computed the storage modulus (G') and loss modulus (G") from the applied torque and the resulting rotational motion of the beads as determined from their remanent magnetic field. Under baseline conditions, G' increased weakly with frequency, whereas G" was independent of the frequency. The cell was predominantly elastic, with the ratio of G" to G' (defined as eta) being ~0.35 at all frequencies. G' and G" increased together after contractile activation and decreased together after deactivation, whereas eta remained unaltered in each case. Thus elastic and dissipative stresses were coupled during changes in contractile activation. G' and G" decreased with disruption of the actin fibers by cytochalasin D, but eta increased. These results imply that the mechanisms for frictional energy loss and elastic energy storage in the living cell are coupled and reside within the cytoskeleton.
Resumo:
The morphological characterisation of the western submarine island flanks of El Hierro and La Palma differentiates four type-zones that may give new insights into the evolution of oceanic island slopes. The different type-zones result from the interplay between constructive volcanic processes, hemipelagic settling and volcano collapses. The latter results in massive debris avalanche deposits, which form large volcaniclastic aprons. In most cases, the headwall scarps are clearly exposed on the emerged part of the islands. The events that occurred in the youngest and westernmost islands of El Hierro and La Palma have vertical runouts exceeding 6,000 m and volumes that can reach several hundred km3. The landslide frequency for the entire Canaries is one major event per 90 ka. Triggering mechanisms are closely related to magmatic processes. The increase in the shear stress is directly linked with the forceful intrusion of magma along ridge-rift systems, while in the western Canary Islands it seems that the main process reducing shear resistance may be related to the rise in pore pressure due to hydrothermal circulation.
Resumo:
We study the interfacial modes of a driven diffusive model under suitable nonequilibrium conditions leading to possible instability. The external field parallel to the interface, which sets up a steady-state parallel flux, enhances the growth or decay rates of the interfacial modes. More dramatically, asymmetry in the model can introduce an oscillatory component into the interfacial dispersion relation. In certain circumstances, the applied field behaves as a singular perturbation.
Resumo:
We present a study of the influence of atomic order on the relative stability of the bcc and the 18R martensitic structures in a Cu2.96Al0.92Be0.12 crystal. Calorimetric measurements have shown that disorder increases the stability of the 18R phase, contrary to what happens in Cu-Zn-Al alloys for which it is the bcc phase that is stabilized by disordering the system. This different behavior has been explained in terms of a model recently reported. We have also proved that the entropy change at the martensitic transition is independent of the state of atomic order of the crystal, as predicted theoretically. Our results suggest that differences in the vibrational spectrum of the crystal due to different states of atomic order must be equal in the bcc and in the close-packed phases.
Resumo:
Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.
Resumo:
We have used an axially symmetric deformed Thomas-Fermi model to evaluate the fission barrier of 240Pu as a function of the quadrupole moment Q2 for different values of the angular momentum L and temperature T. The fission stability diagram of this nucleus is investigated.
Resumo:
We have studied the structure of 3He droplets at zero temperature using a density functional approach plus a configuration interaction calculation in an harmonic oscillator major shell. The most salient feature of open shell drops is that the valence atoms couple their spins to the maximum value compatible with Pauli's principle, building a large magnetic moment. We have determined that 29 atoms constitute the smallest self-bound droplet.
Resumo:
The extended Gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. This ensemble is a further extension of the Gaussian ensemble introduced by Hetherington [J. Low Temp. Phys. 66, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the maximum statistical entropy principle. The probability of each microstate depends on two parameters ß and ¿ which allow one to fix, independently, the mean energy of the system and the energy fluctuations, respectively. We establish the Legendre transform structure for the generalized thermodynamic potential and propose a stability criterion. We also compare the EGE probability distribution with the q-exponential distribution. As an example, an application to a system with few independent spins is presented.
Resumo:
A spatially flat Robertson-Walker spacetime driven by a cosmological constant is nonconformally coupled to a massless scalar field. The equations of semiclassical gravity are explicitly solved for this case, and a self-consistent de Sitter solution associated with the Bunch-Davies vacuum state is found (the effect of the quantum field is to shift slightly the effective cosmological constant). Furthermore, it is shown that the corrected de Sitter spacetime is stable under spatially isotropic perturbations of the metric and the quantum state. These results are independent of the free renormalization parameters.