47 resultados para large deviation theory
Resumo:
A growing literature integrates theories of debt management into models of optimal fiscal policy. One promising theory argues that the composition of government debt should be chosen so that fluctuations in the market value of debt offset changes in expected future deficits. This complete market approach to debt management is valid even when the government only issues non-contingent bonds. A number of authors conclude from this approach that governments should issue long term debt and invest in short term assets. We argue that the conclusions of this approach are too fragile to serve as a basis for policy recommendations. This is because bonds at different maturities have highly correlated returns, causing the determination of the optimal portfolio to be ill-conditioned. To make this point concrete we examine the implications of this approach to debt management in various models, both analytically and using numerical methods calibrated to the US economy. We find the complete market approach recommends asset positions which are huge multiples of GDP. Introducing persistent shocks or capital accumulation only worsens this problem. Increasing the volatility of interest rates through habits partly reduces the size of these simulations we find no presumption that governments should issue long term debt ? policy recommendations can be easily reversed through small perturbations in the specification of shocks or small variations in the maturity of bonds issued. We further extend the literature by removing the assumption that governments every period costlessly repurchase all outstanding debt. This exacerbates the size of the required positions, worsens their volatility and in some cases produces instability in debt holdings. We conclude that it is very difficult to insulate fiscal policy from shocks by using the complete markets approach to debt management. Given the limited variability of the yield curve using maturities is a poor way to substitute for state contingent debt. The result is the positions recommended by this approach conflict with a number of features that we believe are important in making bond markets incomplete e.g allowing for transaction costs, liquidity effects, etc.. Until these features are all fully incorporated we remain in search of a theory of debt management capable of providing robust policy insights.
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.