118 resultados para intermodal transportation problem
Resumo:
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.
Resumo:
The problems arising in commercial distribution are complex and involve several players and decision levels. One important decision is relatedwith the design of the routes to distribute the products, in an efficient and inexpensive way.This article deals with a complex vehicle routing problem that can beseen as a new extension of the basic vehicle routing problem. The proposed model is a multi-objective combinatorial optimization problemthat considers three objectives and multiple periods, which models in a closer way the real distribution problems. The first objective is costminimization, the second is balancing work levels and the third is amarketing objective. An application of the model on a small example, with5 clients and 3 days, is presented. The results of the model show the complexity of solving multi-objective combinatorial optimization problems and the contradiction between the several distribution management objective.
Resumo:
We obtain minimax lower bounds on the regret for the classicaltwo--armed bandit problem. We provide a finite--sample minimax version of the well--known log $n$ asymptotic lower bound of Lai and Robbins. Also, in contrast to the log $n$ asymptotic results on the regret, we show that the minimax regret is achieved by mere random guessing under fairly mild conditions on the set of allowable configurations of the two arms. That is, we show that for {\sl every} allocation rule and for {\sl every} $n$, there is a configuration such that the regret at time $n$ is at least 1 -- $\epsilon$ times the regret of random guessing, where $\epsilon$ is any small positive constant.
Resumo:
The public transportation is gaining importance every year basically duethe population growth, environmental policies and, route and streetcongestion. Too able an efficient management of all the resources relatedto public transportation, several techniques from different areas are beingapplied and several projects in Transportation Planning Systems, indifferent countries, are being developed. In this work, we present theGIST Planning Transportation Systems, a Portuguese project involving twouniversities and six public transportation companies. We describe indetail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and geneticalgorithm to solve the bus-driver-scheduling problem. The metaheuristicshave been successfully incorporated in the GIST Planning TransportationSystems and are actually used by several companies.
Resumo:
The problems arising in the logistics of commercial distribution are complexand involve several players and decision levels. One important decision isrelated with the design of the routes to distribute the products, in anefficient and inexpensive way.This article explores three different distribution strategies: the firststrategy corresponds to the classical vehicle routing problem; the second isa master route strategy with daily adaptations and the third is a strategythat takes into account the cross-functional planning through amulti-objective model with two objectives. All strategies are analyzed ina multi-period scenario. A metaheuristic based on the Iteratetd Local Search,is used to solve the models related with each strategy. A computationalexperiment is performed to evaluate the three strategies with respect to thetwo objectives. The cross functional planning strategy leads to solutions thatput in practice the coordination between functional areas and better meetbusiness objectives.
Resumo:
Alfréd Rényi, in a paper of 1962, A new approach to the theory ofEngel's series, proposed a problem related to the growth of theelements of an Engel's series. In this paper, we reformulate andsolve Rényi's problem for both, Engel's series and Pierceexpansions.
Resumo:
In this paper a p--median--like model is formulated to address theissue of locating new facilities when there is uncertainty. Severalpossible future scenarios with respect to demand and/or the travel times/distanceparameters are presented. The planner will want a strategy of positioning thatwill do as ``well as possible'' over the future scenarios. This paper presents a discrete location model formulation to address this P--Medianproblem under uncertainty. The model is applied to the location of firestations in Barcelona.
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
Resumo:
The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.