115 resultados para infinite dimensional Lie groups
Resumo:
L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta.
Resumo:
Discriminating groups were introduced by G.Baumslag, A.Myasnikov and V.Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. However they have taken on a life of their own and have been an object of a considerable amount of study. In this paper we survey the large array results concerning the class of discriminating groups that have been developed over the past decade.
Resumo:
"Vegeu el resum a l’inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The measurement of social polarization has received little attention from the literature. The only social polarization index that has been used to measure religious or ethnic polarization (the RQ index) has several shortcomings that are critically discussed in the paper. In particular, that index is not taking into account the existing distance between and within different groups. A couple of axiomatically characterized social polarization indices that overcome these limitations are presented. In the empirical section we show that the rankings of countries according to the levels of polarization change to a great extent when we replace the RQ index by the indices presented in this paper.
Resumo:
We prove that automorphisms of the infinite binary rooted tree T2 do not yield quasi-isometries of Thompson's group F, except for the map which reverses orientation on the unit interval, a natural outer automorphism of F. This map, together with the identity map, forms a subgroup of Aut(T2) consisting of 2-adic automorphisms, following standard terminology used in the study of branch groups. However, for more general p, we show that the analgous groups of p-adic tree automorphisms do not give rise to quasiisometries of F(p).
Resumo:
We prove that if f is a partially hyperbolic diffeomorphism on the compact manifold M with one dimensional center bundle, then the logarithm of the spectral radius of the map induced by f on the real homology groups of M is smaller or equal to the topological entropy of f. This is a particular case of the Shub's entropy conjecture, which claims that the same conclusion should be true for any C1 map on any compact manifold.
Resumo:
The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor triads. We illustrate both geometrically and algebraically how these two actions are dual. Both actions and their duality have been used to analyze works of music as diverse as Hindemith and the Beatles.
Resumo:
We consider negotiations selecting one-dimensional policies. Individuals have single-peaked preferences, and they are impatient. Decisions arise from a bargaining game with random proposers and (super) majority approval, ranging from the simple majority up to unanimity. The existence and uniqueness of stationary subgame perfect equilibrium is established, and its explicit characterization provided. We supply an explicit formula to determine the unique alternative that prevails, as impatience vanishes, for each majority. As an application, we examine the efficiency of majority rules. For symmetric distributions of peaks unanimity is the unanimously preferred majority rule. For asymmetric populations rules maximizing social surplus are characterized.
Resumo:
We give a unified solution the conjugacy problem in Thompson’s groups F, V , and T using strand diagrams, and we analyze the complexity of the resulting algorithms.