55 resultados para functional connectivity
Resumo:
Chronic ethanol feeding selectively impairs the translocation of cytosol GSH into the mitochondrial matrix. Since ethanol-induced liver cell injury is preferentially localized in the centrilobular area, we examined the hepatic acinar distribution of mitochondrial GSH transport in ethanol-fed rats. Enriched periportal (PP) and perivenous (PV) hepatocytes from pair- and ethanol-fed rats were prepared as well as mitochondria from these cells. The mitochondrial pool size of GSH was decreased in both PP and PV cells from ethanol-fed rats either as expressed per 10(6) cells or per microliter of mitochondrial matrix volume. The rate of reaccumulation of mitochondrial GSH and the linear relationship of mitochondrial to cytosol GSH from ethanol-fed mitochondria were lower for both PP and PV cells, effects observed more prominently in the PV cells. Mitochondrial functional integrity was lower in both PP and PV ethanol-fed rats, which was associated with decreased cellular ATP levels and mitochondrial membrane potential, effects which were greater in the PV cells. Mitochondrial GSH depletion by ethanol feeding preceded the onset of functional changes in mitochondria, suggesting that mitochondrial GSH is critical in maintaining a functionally competent organelle and that the greater depletion of mitochondrial GSH by ethanol feeding in PV cells could contribute to the pathogenesis of alcoholic liver disease.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
A hybrid theory which combines the full nonlocal ¿exact¿ exchange interaction with the local spin-density approximation of density-functional theory is shown to lead to marked improvement in the description of antiferromagnetically coupled systems. Semiquantitative agreement with experiment is found for the magnitude of the coupling constant in La2CuO4, KNiF3, and K2NiF4. The magnitude of the unpaired spin population on the metal site is in excellent agreement with experiment for La2CuO4.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
Abstract. Drought leads to a loss of longitudinal and lateral hydrologic connectivity, which causes direct or indirect changes in stream ecosystem properties. Changes in macrohabitat availability from a rifflepool sequence to isolated pools are among the most conspicuous consequences of connectivity loss. Macroinvertebrate assemblages were compared among 3 distinct stream macrohabitats (riffles [R], pools connected to riffles [Pc], disconnected pools [Pd]) of 19 Mediterranean-climate sites in northern California to examine the influence of loss of habitat resulting from drought disturbance. At the time of sampling, 10 sites were perennial and included R and Pc macrohabitats, whereas 9 sites were intermittent and included only Pd macrohabitats. Taxa richness was more variable in Pd, and taxa richness was significantly lower in Pd than in Pc but not R. These results suggested a decline in richness between Pc and Pd that might be associated with loss of connectivity. Lower Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness relative to Odonata, Coleoptera, and Heteroptera (OCH) richness was observed for Pd than R and Pc macrohabitats. Family composition was more similar between R and Pc than between R or Pc and Pd macrohabitats. This similarity may be associated with greater connectivity between R and Pc macrohabitats. Correspondence analysis indicated that macroinvertebrate composition changed along a gradient from R to Pc and Pd that was related to a perennialintermittent gradient across sites. High variability among macroinvertebrate assemblages in Pd could have been related to variability in the duration of intermittency. In cluster analysis, macroinvertebrate assemblages were grouped by macrohabitat first and then by site, suggesting that the macrohabitat filter had a greater influence on macroinvertebrate assemblages than did local site characteristics. Few taxa were found exclusively in Pc, and this macrohabitat shared numerous taxa with R and Pd, indicating that Pc may act as a bridge between R and Pd during drought. Drought is regarded as a ramp disturbance, but our results suggest that the response of macroinvertebrate assemblages to the loss of hydrological connectivity among macrohabitats is gradual, at least in Mediterranean-climate streams where drying is gradual. However, the changes may be more dramatic in arid and semiarid streams or in Mediterranean-climate streams if drying is rapid.
Resumo:
Few studies have been found that to assess the factors that explain higher levels of familyburden in adults with intellectualdisability (ID) and intellectualdisability and mental disorders (ID-MD). The aims of this study were to assess familyburden in people with ID and ID-MD and to determine which sociodemographic, clinical and functionaldisabilityvariables account for familyburden. The sample is composed of pairs of 203 participants with disability and their caregivers, of which 33.5% are caregivers of people with ID and 66.5% of ID-MD. Assessments were performed using scales of clinical and functionaldisability as the following instruments: Weschler Adult Intelligence Scale-III (WAIS-III), Inventory for Client and Agency Planning (ICAP), Psychiatric Assessment Schedule for Adults with Development Disability (PAS-ADD checklist), Disability Assessment Schedule of the World Health Organization (WHO-DAS-II) and familyburden (Subjective and Objective FamilyBurden Inventory - SOFBI/ECFOS-II). People with ID-MD presented higher levels of functionaldisability than those with ID only. Higher levels of familyburden were related to higher functionaldisability in all the areas (p < 0.006-0.001), lower intelligence quotient (p < 0.001), diagnosis of ID-MD (p < 0.001) and presence of organic, affective, psychotic and behavioral disorders (p < 0.001). Stepwise multiple regression showed that behavioral problems, affective and psychotic disorder, disability in participation in society, disability in personal care and presence of ID-MD explained more than 61% of the variance in familyburden. An integrated approach using effective multidimensional interventions is essential for both people with ID and ID-MD and their caregivers in order to reduce familyburden.