71 resultados para disordered systems (theory)
Resumo:
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image processing. This paper provides the theoretical background and technical information for performing the experiment. The proposed activity requires students able to develop a wide range of skills since they are expected to deal with optical components, including spatial light modulators, and develop scripts to perform some calculations.
Resumo:
We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
We derive a Hamiltonian formulation for the three-dimensional formalism of predictive relativistic mechanics. This Hamiltonian structure is used to derive a set of dynamical equations describing the interaction among systems in perturbation theory.
Resumo:
We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.
Resumo:
In this paper we consider an exactly solvable model that displays glassy behavior at zero temperature due to entropic barriers. The new ingredient of the model is the existence of different energy scales or modes associated with different relaxational time scales. Low-temperature relaxation takes place by partial equilibration of successive lower-energy modes. An adiabatic scaling solution, defined in terms of a threshold energy scale e*, is proposed. For such a solution, modes with energy ee* are equilibrated at the bath temperature, modes with ee* remain out of equilibrium, and relaxation occurs in the neighborhood of the threshold e~e*. The model is presented as a toy example to investigate the conditions related to the existence of an effective temperature in glassy systems and its possible dependence on the energy sector is probed by the corresponding observable.
Resumo:
We consider mean first-passage times (MFPTs) for systems driven by non-Markov gamma and McFadden dichotomous noises. A simplified derivation is given of the underlying integral equations and the theory for ordinary renewal processes is extended to modified and equilibrium renewal processes. The exact results are compared with the MFPT for Markov dichotomous noise and with the results of Monte Carlo simulations.
Resumo:
We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.
Resumo:
A generalization of the predictive relativistic mechanics is studied where the initial conditions are taken on a general hypersurface of M4. The induced realizations of the Poincar group are obtained. The same procedure is used for the Galileo group. Noninteraction theorems are derived for both groups.
Resumo:
The interactions of tiny objects with their environments are dominated by thermal fluctuations. Guided by theory and assisted by new micromanipulation tools, scientists have begun to study such interactions in detail.
Resumo:
The behavior of chemical waves advancing through a disordered excitable medium is investigated in terms of percolation theory and autowave properties in the framework of the light-sensitive Belousov-Zhabotinsky reaction. By controlling the number of sites with a given illumination, different percolation thresholds for propagation are observed, which depend on the relative wave transmittances of the two-state medium considered.
Resumo:
A hybrid theory which combines the full nonlocal ¿exact¿ exchange interaction with the local spin-density approximation of density-functional theory is shown to lead to marked improvement in the description of antiferromagnetically coupled systems. Semiquantitative agreement with experiment is found for the magnitude of the coupling constant in La2CuO4, KNiF3, and K2NiF4. The magnitude of the unpaired spin population on the metal site is in excellent agreement with experiment for La2CuO4.
Resumo:
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
Resumo:
The RuskSkinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. 2004 American Institute of Physics.