49 resultados para computational geometry
Resumo:
Membrane proteins account for about 20% to 30% of all proteins encoded in a typical genome. They play central roles in multiple cellular processes mediating the interaction of the cell with its surrounding. Over 60% of all drug targets contain a membrane domain. The experimental difficulties of obtaining a crystal structural severely limits our ability or understanding of membrane protein function. Computational evolutionary studies of proteins are crucial for the prediction of 3D structures. In this project, we construct a tool able to quantify the evolutionary positive selective pressure on each residue of membrane proteins through maximum likelihood phylogeny reconstruction. The conservation plot combined with a structural homology model is also a potent tool to predict those residues that have essentials roles in the structure and function of a membrane protein and can be very useful in the design of validation experiments.
Resumo:
Although approximately 50% of Down Syndrome (DS) patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS). The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS). Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue) and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%), such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.
Resumo:
It is often assumed that total head losses in a sand filter are solely due to the filtration media and that there are analytical solutions, such as the Ergun equation, to compute them. However, total head losses are also due to auxiliary elements (inlet and outlet pipes and filter nozzles), which produce undesirable head losses because they increase energy requirements without contributing to the filtration process. In this study, ANSYS Fluent version 6.3, a commercial computational fluid dynamics (CFD) software program, was used to compute head losses in different parts of a sand filter. Six different numerical filter models of varying complexities were used to understand the hydraulic behavior of the several filter elements and their importance in total head losses. The simulation results show that 84.6% of these were caused by the sand bed and 15.4% were due to auxiliary elements (4.4% in the outlet and inlet pipes, and 11.0% in the perforated plate and nozzles). Simulation results with different models show the important role of the nozzles in the hydraulic behavior of the sand filter. The relationship between the passing area through the nozzles and the passing area through the perforated plate is an important design parameter for the reduction of total head losses. A reduced relationship caused by nozzle clogging would disproportionately increase the total head losses in the sand filter
Resumo:
Peer-reviewed