88 resultados para angular divergence
Resumo:
We study elections in which one party (the strong party) controls a source of political unrest; e.g., this party could instigate riots if it lost the election. We show that the strong party is more likely to win the election when there is less information about its ability to cause unrest. This is because when theweak party is better informed, it can more reliably prevent political unrest by implementing a ``centrist'' policy. When there is uncertainty over the credibility of the threat, ``posturing'' by the strong party leads to platform divergence.
Resumo:
Immunity-related GTPases (IRG) play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago). Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF). We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.
Resumo:
La mesura de la irradiància solar en superfície es fa mitjançant piranòmetres amb sensor termoelèctric o amb sensor de silici. Aquests darrers presenten una resposta espectral no uniforme i limitada a la banda de 400 a 1100 nm, i, a més, la seva sensibilitat depèn fortament de la temperatura. Els piranòmetres termoelèctrics, en canvi, presenten una resposta espectral uniforme en la banda solar, i un coeficient de temperatura reduït. L’objectiu de l’estudi que es presenta ha estat millorar l’acord entre les mesures d’irradiància global preses amb un piranòmetre termoelèctric CM11 de Kipp & Zonen, i diversos piranòmetres fotovoltaics o de silici Li200SA de Li-Cor. Com que la resposta angular dels sensors s’aparta en general de la resposta cosinus ideal, es proposen unes correccions a tal efecte. S’han analitzat les dades minutals corresponents a un cicle anual de mesures d’irradiància preses pels dos tipus de piranòmetres a l’estació radiomètrica de la Universitat de Girona. Les correccions proposades per la resposta angular dels instruments es basen en bibliografia prèvia, i també en simulacions realitzades amb un model espectral de transferència radiativa multicapa. La simulació ha permès obtenir correccions per compensar les diferents respostes angulars i espectrals dels dos tipus d’instruments. Per a cels serens, les correccions angulars i espectrals milloren notablement l’acord entre les mesures dels dos tipus de piranòmetres. També es proposa una correcció de l’efecte de la temperatura sobre la mesura dels piranòmetres de silici, obtinguda empíricament. Malgrat que les correccions s’han obtingut per a cels serens, han estat també aplicades a condicions de cel ennuvolat, caracteritzades objectivament mitjançant un algorisme basat en mesures d’irradiància global i difusa. Finalment s’ha comprovat que les correccions també milloren l’acord entre les mesures dels dos tipus de sensors independentment de l’extensió de la coberta de núvols
Resumo:
Here I develop a model of a radiative-convective atmosphere with both radiative and convective schemes highly simplified. The atmospheric absorption of radiation at selective wavelengths makes use of constant mass absorption coefficients in finite width spectral bands. The convective regime is introduced by using a prescribed lapse rate in the troposphere. The main novelty of the radiative-convective model developed here is that it is solved without using any angular approximation for the radiation field. The solution obtained in the purely radiation mode (i. e. with convection ignored) leads to multiple equilibria of stable states, being very similar to some results recently found in simple models of planetary atmospheres. However, the introduction of convective processes removes the multiple equilibria of stable states. This shows the importance of taking convective processes into account even for qualitative analyses of planetary atmosphere
Resumo:
Aims.We revisit the vicinity of the microquasar Cygnus X-3 at radio wavelengths. We aim to improve our previous search for possible associated extended radio features/hot spots in the position angle of the Cygnus X-3 relativistic jets focusing on shorter angular scales than previously explored. Methods.Our work is mostly based on analyzing modern survey and archive radio data, mainly including observations carried out with the Very Large Array and the Ryle Telescopes. We also used deep near-infrared images that we obtained in 2005. Results.We present new radio maps of the Cygnus X-3 field computed after combining multi-configuration Very Large Array archive data at 6 cm and different observing runs at 2 cm with the Ryle Telescope. These are probably among the deepest radio images of Cygnus X-3 reported to date at cm wavelengths. Both interferometers reveal an extended radio feature within a few arc-minutes of the microquasar position, thus making our detection more credible. Moreover, this extended emission is possibly non-thermal, although this point still needs confirmation. Its physical connection with the microquasar is tentatively considered under different physical scenarios. We also report on the serendipitous discovery of a likely Fanaroff-Riley type II radio galaxy only away from Cygnus X-3.
Resumo:
Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.
Resumo:
The oxidation of GaAs and AlGaAs targets subjected to O2+ bombardment has been analyzed, using in situ x¿ray photoelectron spectroscopy, as a function of time until steady state is reached. The oxides formed by the O2+ bombardment have been characterized in terms of composition and binding energy. A strong energy and angular dependence for the oxidation of As relative to Ga is found. Low energies as well as near normal angles of incidence favor the oxidation of As. The difference between Ga and As can be explained in terms of the formation enthalpy for the oxide and the excess supply of oxygen. In an AlGaAs target the Al is very quickly completely oxidized irrespective of the experimental conditions. The steady state composition of the altered layers show in all cases a preferential removal of As.
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.
Resumo:
We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies
Resumo:
The antikaon optical potential in hot and dense nuclear matter is studied within the framework of a coupled-channel self-consistent calculation taking, as bare meson-baryon interaction, the meson-exchange potential of the Jlich group. Typical conditions found in heavy-ion collisions at GSI are explored. As in the case of zero temperature, the angular momentum components larger than L=0 contribute significantly to the finite temperature antikaon optical potential at finite momentum. It is found that the particular treatment of the medium effects has a strong influence on the behavior of the antikaon potential with temperature. Our self-consistent model, in which antikaons and pions are dressed in the medium, gives a moderately temperature dependent antikaon potential which remains attractive at GSI temperatures, contrary to what one finds if only nuclear Pauli blocking effects are included.
Resumo:
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.
Resumo:
We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however, rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100-132Sn are presented for demonstration purposes.
Resumo:
We have used an axially symmetric deformed Thomas-Fermi model to evaluate the fission barrier of 240Pu as a function of the quadrupole moment Q2 for different values of the angular momentum L and temperature T. The fission stability diagram of this nucleus is investigated.
Resumo:
The real part of the optical potential for heavy ion elastic scattering is obtained by double folding of the nuclear densities with a density-dependent nucleon-nucleon effective interaction which was successful in describing the binding, size, and nucleon separation energies in spherical nuclei. A simple analytical form is found to differ from the resulting potential considerably less than 1% all through the important region. This analytical potential is used so that only few points of the folding need to be computed. With an imaginary part of the Woods-Saxon type, this potential predicts the elastic scattering angular distribution in very good agreement with experimental data, and little renormalization (unity in most cases) is needed.
Resumo:
We study strongly correlated ground and excited states of rotating quasi-2D Fermi gases constituted of a small number of dipole-dipole interacting particles with dipole moments polarized perpendicular to the plane of motion. As the number of atoms grows, the system enters an intermediate regime, where ground states are subject to a competition between distinct bulk-edge configurations. This effect obscures their description in terms of composite fermions and leads to the appearance of novel quasihole ground states. In the presence of dipolar interactions, the principal Laughlin state at filling upsilon=1/3 exhibits a substantial energy gap for neutral (total angular momentum conserving) excitations and is well-described as an incompressible Fermi liquid. Instead, at lower fillings, the ground state structure favors crystalline order.