83 resultados para Weakly Hyperbolic Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified Bargmann-Wigner method is used to derive (6s + 1)-component wave equations. The relation between different forms of these equations is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found. Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical information about the role that the viscosity contrast and the surface tension play in the dynamics of the system. We finally check the quantitative validity of different orders of approximation and a resummation scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order approximations and the exact solution is excellent within the radius of convergence, and is even reasonably good beyond this radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a weakly nonlinear analysis of the interface dynamics in a radial Hele-Shaw cell driven by both injection and rotation. We extend the systematic expansion introduced in [E. Alvarez-Lacalle et al., Phys. Rev. E 64, 016302 (2001)] to the radial geometry, and compute explicitly the first nonlinear contributions. We also find the necessary and sufficient condition for the uniform convergence of the nonlinear expansion. Within this region of convergence, the analytical predictions at low orders are compared satisfactorily to exact solutions and numerical integration of the problem. This is particularly remarkable in configurations (with no counterpart in the channel geometry) for which the interplay between injection and rotation allows that condition to be satisfied at all times. In the case of the purely centrifugal forcing we demonstrate that nonlinear couplings make the interface more unstable for lower viscosity contrast between the fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a multisoliton solution to Einsteins equations in vacuum. The solution is interpreted as many gravitational solitons propagating and colliding on a homogeneous cosmological background. Following a previous letter, we characterize the solitons by their localizability and by their peculiar properties under collisions. Furthermore, we define an associated frame-dependent velocity field which illustrates the solitonic character of these gravitational solitons in the classical sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study under which circumstances there exists a general change of gross variables that transforms any FokkerPlanck equation into another of the OrnsteinUhlenbeck class that, therefore, has an exact solution. We find that any FokkerPlanck equation will be exactly solvable by means of a change of gross variables if and only if the curvature tensor and the torsion tensor associated with the diffusion is zero and the transformed drift is linear. We apply our criteria to the Kubo and Gompertz models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a sufficient condition for a set of block subspaces in an infinite-dimensional Banach space to be weakly Ramsey. Using this condition we prove that in the Levy-collapse of a Mahlo cardinal, every projective set is weakly Ramsey. This, together with a construction of W. H. Woodin, is used to show that the Axiom of Projective Determinacy implies that every projective set is weakly Ramsey. In the case of co we prove similar results for a stronger Ramsey property. And for hereditarily indecomposable spaces we show that the Axiom of Determinacy plus the Axiom of Dependent Choices imply that every set is weakly Ramsey. These results are the generalizations to the class of projective sets of some theorems from W. T. Gowers, and our paper "Weakly Ramsey sets in Banach spaces."