91 resultados para Vares, Mari


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation). A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods: With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results: The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion: The method presented allows the comparison (i.e. as copies of mRNA per cell) between different genes and tissues, establishing the degree of abundance of the different molecular species tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After birth, the body shifts from glucose as primary energy substrate to milk-derived fats, with sugars from lactose taking a secondary place. At weaning, glucose recovers its primogeniture and dietary fat role decreases. In spite of human temporary adaptation to a high-fat (and sugars and protein) diet during lactation, the ability to thrive on this type of diet is lost irreversibly after weaning. We could not revert too the lactating period metabolic setting because of different proportions of brain/muscle metabolism in the total energy budget, lower thermogenesis needs and capabilities, and absence of significant growth in adults. A key reason for change was the limited availability of foods with high energy content at weaning and during the whole adult life of our ancestors, which physiological adaptations remain practically unchanged in our present-day bodies. Humans have evolved to survive with relatively poor diets interspersed by bouts of scarcity and abundance. Today diets in many societies are largely made up from choice foods, responding to our deeply ingrained desire for fats, protein, sugars, salt etc. Consequently our diets are not well adjusted to our physiological needs/adaptations but mainly to our tastes (another adaptation to periodic scarcity), and thus are rich in energy roughly comparable to milk. However, most adult humans cannot process the food ingested in excess because our cortical-derived craving overrides the mechanisms controlling appetite. This is produced not because we lack the biochemical mechanisms to use this energy, but because we are unprepared for excess, and wholly adapted to survive scarcity. The thrifty mechanisms compound the effects of excess nutrients and damage the control of energy metabolism, developing a pathologic state. As a consequence, an overflow of energy is generated and the disease of plenty develops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat) intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activities of aspartate and alanine transaminase, serine dehydratase, arginase, glutamate dehydrogenase, adenylate deaminase and glutamine synthetase were determined in the stomach and small intestine of developing rats. Despite the common embryonic origin of the intestine and stomach, their enzymes showed quite different activity levels and patterns of development, depending on their roles. Most enzyme activities were low during late intrauterine life and after birth, attaining adult levels with the change of diet at weaning. No arginase activity was found in the stomach and no changes were detected in adenylate deaminase in the stomach or intestine throughout the period studied. Alanine transaminase, serine dehydratase and, to some extent, glutamine synthetase levels, significantly higher in late intrauterine life, decreased after birth, suggesting that the foetal stomach has a transient ability to handle amino acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The effects of "cafeteria feeding" on primiparous Wistar rats during lactation have been studied by measuring circulating levels of glucose, amino acids, lactate, urea and ammonia as well as glycogen levels in liver and muscle. 2. No significant changes in glucose levels were observed despite alterations in blood glucose compartmentation. 3. Compared with controls, the dams given the cafeteria diet had higher liver glycogen stores which were more easily mobilized at the peak of lactation. 4. Rats given the cafeteria diet showed a lower amino acid utilization than controls and adequately maintained circulating levels, as determined by the lower circulating levels of ammonia and urea. 5. No significant differences in body-weight were observed in the period studied despite increasing dam weight after weaning in the cafeteria-fed group. 6. The size of pups of cafeteria-fed dams was greater than that of controls, and the differences were marked after weaning, when the metabolic machinery of the cafeteria pup maintained high protein accretion and body build-up using fat as the main energy substrate characteristic of the preweaning stage. The controls, however, changed to greater utilization of amino acids as an energy substrate and adapted to high-protein (lowbiological-quality) diets with a significantly different pattern of circulating nitrogen distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fate of a small oral dose of protein given to overnight-starved rats was studied. After 3 h, 62 per cent of the protein amino acids had been absorbed. Most of the absorbed N went into the bloodstream through the portal in the form of amino acids, but urea and ammonia were also present. About one-quarter of all absorbed N was carried as lymph amino acids. The liver was able to take all portal free ammonia and a large proportion of portal amino acids, releasing urea. The hepatic N balance was negative, indicating active proteolysis and net loss of liver protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El treball és una biografia àmpliament documentada sobre els tres germans Batlles i Torres-Amat, metges coenguts i liberals convençuts que van jugar un paper rellevant en la vida social de la seva època. Va ser aquesta una època especialment significativa políticament per a Catalunya i el Pais Valencià, en el context marcat per la mort de Ferran VII i el pas a formes polítiques més liberals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic syndrome developed in consequence of an evolutionary inadequacy: the human body was unprepared for a dietary excess of nutrients, especially lipids (largely in detriment of carbohydrate). This excess awakens metabolic signals akin to those of starvation, in which the main energy staple is the body"s own lipid reserve. Lipid dietary abundance prevents the use of glucose, which in turn limits the oxidation of amino acids. To ward against a subsequent avalanche of substrates, the immune system and hypertrophied tissues (for example, adipose) elicit a series of defence responses. This response is probably the ultimate basis of a disease that is manifested as various pathologies, which were initially defined as distinct entities but which are slowly being seen as a single pathognomic unit in the literature. Based on their common origin of the ample availability of food in our modern society, the cluster of diseases comprising the metabolic syndrome is probably best described as a single multifaceted disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Torre Llauder pottery workshop, where evidence was found of the manufacture of Pascual 1 and Dressel 2–4 amphoras in the 1960s and 70s, is one of the most emblematic of the Laietania region. Marià Ribas had already expressed her opinion that tegulae with the L·HER·OPT stamp had also been manufactured there. In addition, it was theorised that this pottery had also produced plain ware. In this paper we present the results of the analysis3 of samples of the above mentioned types of pottery, carried out with the aim of shedding some light on these questions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the metabolic syndrome, glucocorticoid activity is increased, but circulating levels show little change. Most of blood glucocorticoids are bound to corticosteroid-binding globulin (CBG), which liver expression and circulating levels are higher in females than in males. Since blood hormones are also bound to blood cells, and the size of this compartment is considerable for androgens and estrogens, we analyzed whether sex or eating a cafeteria diet altered the compartmentation of corticosterone in rat blood. The main corticosterone compartment in rat blood is that specifically bound to plasma proteins, with smaller compartments bound to blood cells or free. Cafeteria diet increased the expression of liver CBG gene, binding plasma capacity and the proportion of blood cell-bound corticosterone. There were marked sex differences in blood corticosterone compartmentation in rats, which were unrelated to testosterone. The use of a monoclonal antibody ELISA and a polyclonal Western blot for plasma CBG compared with both specific plasma binding of corticosterone and CBG gene expression suggested the existence of different forms of CBG, with varying affinities for corticosterone in males and females, since ELISA data showed higher plasma CBG for males, but binding and Western blot analyses (plus liver gene expression) and higher physiological effectiveness for females. Good cross- reactivity to the antigen for polyclonal CBG antibody suggests that in all cases we were measuring CBG.The different immunoreactivity and binding affinity may help explain the marked sex-related differences in plasma hormone binding as sex-linked different proportions of CBG forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amino-N is preserved because of the scarcity and nutritional importance of protein. Excretion requires its conversion to ammonia, later incorporated into urea. Under conditions of excess dietary energy, the body cannot easily dispose of the excess amino-N against the evolutively adapted schemes that prevent its wastage; thus ammonia and glutamine formation (and urea excretion) are decreased. High lipid (and energy) availability limits the utilisation of glucose, and high glucose spares the production of ammonium from amino acids, limiting the synthesis of glutamine and its utilisation by the intestine and kidney. The amino acid composition of the diet affects the production of ammonium depending on its composition and the individual amino acid catabolic pathways. Surplus amino acids enhance protein synthesis and growth, and the synthesis of non-protein-N-containing compounds. But these outlets are not enough; consequently, less-conventional mechanisms are activated, such as increased synthesis of NO∙ followed by higher nitrite (and nitrate) excretion and changes in the microbiota. There is also a significant production of N(2) gas, through unknown mechanisms. Health consequences of amino-N surplus are difficult to fathom because of the sparse data available, but it can be speculated that the effects may be negative, largely because the fundamental N homeostasis is stretched out of normalcy, forcing the N removal through pathways unprepared for that task. The unreliable results of hyperproteic diets, and part of the dysregulation found in the metabolic syndrome may be an unwanted consequence of this N disposal conflict.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la rama de CCSS la Universidad de Barcelona tiene en marcha actualmente diez titulaciones oficiales de grado, dos de ellas en centros adscritos. En este curso 2012/13 la oferta total de plazas de nuevo ingreso fue de 2134, repartidas en siete campus de la ciudad y alrededores. Con la finalidad de dinamizar las relaciones entre los distintos equipos docentes de estadística, se elaboró un proyecto de innovación docente que ha sido reconocido por la UB (2012PIB-UB/098); El primer objetivo era “valorar qué competencias son comunes a las asignaturas que se derivan de una misma materia básica, tanto transversales como específicas”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.