83 resultados para Uniformly Starlike Functions
Resumo:
We study steady-state correlation functions of nonlinear stochastic processes driven by external colored noise. We present a methodology that provides explicit expressions of correlation functions approximating simultaneously short- and long-time regimes. The non-Markov nature is reduced to an effective Markovian formulation, and the nonlinearities are treated systematically by means of double expansions in high and low frequencies. We also derive some exact expressions for the coefficients of these expansions for arbitrary noise by means of a generalization of projection-operator techniques.
Resumo:
The intensity correlation functions C(t) for the colored-gain-noise model of dye lasers are analyzed and compared with those for the loss-noise model. For correlation times ¿ larger than the deterministic relaxation time td, we show with the use of the adiabatic approximation that C(t) values coincide for both models. For small correlation times we use a method that provides explicit expressions of non-Markovian correlation functions, approximating simultaneously short- and long-time behaviors. Comparison with numerical simulations shows excellent results simultaneously for short- and long-time regimes. It is found that, when the correlation time of the noise increases, differences between the gain- and loss-noise models tend to disappear. The decay of C(t) for both models can be described by a time scale that approaches the deterministic relaxation time. However, in contrast with the loss-noise model, a secondary time scale remains for large times for the gain-noise model, which could allow one to distinguish between both models.
Resumo:
An algorithm for computing correlation filters based on synthetic discriminant functions that can be displayed on current spatial light modulators is presented. The procedure is nondivergent, computationally feasible, and capable of producing multiple solutions, thus overcoming some of the pitfalls of previous methods.
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
We have shown that finite-size effects in the correlation functions away from equilibrium may be introduced through dimensionless numbers: the Nusselt numbers, accounting for both the nature of the boundaries and the size of the system. From an analysis based on fluctuating hydrodynamics, we conclude that the mean-square fluctuations satisfy scaling laws, since they depend only on the dimensionless numbers in addition to reduced variables. We focus on the case of diffusion modes and describe some physical situations in which finite-size effects may be relevant.
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
We prove some results concerning the possible configuration s of Herman rings for transcendental meromorphic functions. We show that one pole is enough to obtain cycles of Herman rings of arbitrary period a nd give a sufficient condition for a configuration to be realizable.
Resumo:
We present an analysis of the M-O chemical bonding in the binary oxides MgO, CaO, SrO, BaO, and Al2O3 based on ab initio wave functions. The model used to represent the local environment of a metal cation in the bulk oxide is an MO6 cluster which also includes the effect of the lattice Madelung potential. The analysis of the wave functions for these clusters leads to the conclusion that all the alkaline-earth oxides must be regarded as highly ionic oxides; however, the ionic character of the oxides decreases as one goes from MgO, almost perfectly ionic, to BaO. In Al2O3 the ionic character is further reduced; however, even in this case, the departure from the ideal, fully ionic, model of Al3+ is not exceptionally large. These conclusions are based on three measures, a decomposition of the Mq+-Oq- interaction energy, the number of electrons associated to the oxygen ions as obtained from a projection operator technique, and the analysis of the cation core-level binding energies. The increasing covalent character along the series MgO, CaO, SrO, and BaO is discussed in view of the existing theoretical models and experimental data.
Resumo:
Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.
Resumo:
Interdependence is the main feature of dyadic relationships and, in recent years, various statistical procedures have been proposed for quantifying and testing this social attribute in different dyadic designs. The purpose of this paper is to develop several functions for this kind of statistical tests in an R package, known as nonindependence, for use by applied social researchers. A Graphical User Interface (GUI) is also developed to facilitate the use of the functions included in this package. Examples drawn from psychological research and simulated data are used to illustrate how the software works.
Resumo:
The specific heat, cp, of two amorphous silicon (a-Si) samples has been measured by differential scanning calorimetry in the 100–900K temperature range. When the hydrogen content is reduced by thermal annealing, cp approaches the value of crystalline Si (c-Si). Within experimental accuracy, we conclude that cp of relaxed pure a-Si coincides with that of c-Si. This result is used to determine the enthalpy, entropy, and Gibbs free energy of defect-free relaxed a-Si. Finally, the contribution of structural defects on these quantities is calculated and the melting point of several states of a-Si is predicted
Resumo:
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG and OMgp, share two common neuronal receptors: NgR1, together with its co-receptors (p75(NTR), TROY and Lingo-1), and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study during in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes such as development, neuronal homeostasis, plasticity and neurodegeneration.
Resumo:
Following a scheme of Levin we describe the values that functions in Fock spaces take on lattices of critical density in terms of both the size of the values and a cancelation condition that involves discrete versions of the Cauchy and Beurling-Ahlfors transforms.