51 resultados para Two-dimensional gel electrophoresis
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
The relationship between pressure induced changes on individual proteins and selected quality parameters in bovine longissimus thoracis et lumborum (LTL) muscle was studied. Pressures ranging from 200 to 600 MPa at 20 °C were used. High pressure processing (HPP) at pressures above 200 MPa induced strong modifications of protein solubility, meat colour and water holding capacity (WHC). The protein profiles of non-treated and pressure treated meat were observed using two dimensional electrophoresis. Proteins showing significant differences in abundance among treatments were identified by mass spectrometry. Pressure levels above 200 MPa strongly modified bovine LTL proteome with main effects being insolubilisation of sarcoplasmic proteins and solubilisation of myofibrillar proteins. Sarcoplasmic proteins were more susceptible to HPP effects than myofibrillar. Individual protein changes were significantly correlated with protein solubility, L*, b* and WHC, providing further insights into the mechanistic processes underlying HPP influence on quality and providing the basis for the future development of protein markers to assess the quality of processed meats.
Resumo:
We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.
Resumo:
The most general black M5-brane solution of eleven-dimensional supergravity (with a flat R4 spacetime in the brane and a regular horizon) is characterized by charge, mass and two angular momenta. We use this metric to construct general dual models of large-N QCD (at strong coupling) that depend on two free parameters. The mass spectrum of scalar particles is determined analytically (in the WKB approximation) and numerically in the whole two-dimensional parameter space. We compare the mass spectrum with analogous results from lattice calculations, and find that the supergravity predictions are close to the lattice results everywhere on the two dimensional parameter space except along a special line. We also examine the mass spectrum of the supergravity Kaluza-Klein (KK) modes and find that the KK modes along the compact D-brane coordinate decouple from the spectrum for large angular momenta. There are however KK modes charged under a U(1)×U(1) global symmetry which do not decouple anywhere on the parameter space. General formulas for the string tension and action are also given.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.