67 resultados para Trophic diversity
Resumo:
Systems made of parts that are totally connected do not work, neither ecosys- tems nor artifacts. Relative connectance is inversely related to diversity, and both magnitudes can find a common frame of expression, in which some constant expressing the constraints of any organization might be embodied. If S is Simp- son's index, the expression (1 - S)IS as a measure of diversity offers some advantages or, at least, helps further reasoning. Such expression is the ratio between total interspecific possible interactions and possible intraspecific inter- actions.
Resumo:
Stable isotope abundances of carbon (δ13C) and nitrogen (δ15N) in the bone of 13 species of marine mammals from the northwest coast of Africa were investigated to assess their positions in the local trophic web and their preferred habitats. Also, samples of primary producers and potential prey species from the study area were collected to characterise the local isotopic landscape. This characterisation indicated that δ13C values increased from offshore to nearshore and that δ15N was a good proxy for trophic level. Therefore, the most coastal species were Monachus monachus and Sousa teuszii, whereas the most pelagic were Physeter macrocephalus and Balaenoptera acutorostrata. δ15N values indicated that marine mammals located at the lowest trophic level were B. acutorostrata, Stenella coeruleoalba and Delphinus sp., and those occupying the highest trophic level were M. monachus and P. macrocephalus. The trophic level of Orcinus orca was similar to that of M. monachus, suggesting that O. orca preys on fish. Conservation of coastal and threatened species (M. monachus and S. teuszii) off NW Africa should be a priority because these species, as the main apex predators, cannot be replaced by other marine mammals.
Resumo:
Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.
Resumo:
Symbiotic interactions between ascidians (sea-squirts) and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS) and by examining symbiont morphology with transmission electron (TEM) and confocal microscopy (CM). As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d) and phycobiliproteins (PBPs) within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.
Resumo:
In this paper we shall try to explain why speakers experience their languages so passionately. One explanation is based on the role language plays in the construction of the community and in the fact that it is a clear mark of belonging. Furthermore, we support another reason. Speakers experience their language as something received from their ancestors and that they are obliged to transmit to their descendents, an imperative which carries an extraordinary emotional charge. In fact, fear of the death of a language is experienced as an act of irreparable non-fulfilment. Why? We believe that language is one of the most evident signs of community, much more than the sum of the individuals of which it is composed. Indeed, it is a long-lasting entity projected into both the past and the future and which, moreover, accumulates within the language the whole of the culture. In the survival of the community and the language we find a response, even though it may be illusory, to the need for transcendence: our ancestors live on in our language and we, if we meet our obligations, live on in the language of our descendents
Resumo:
The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral involving the probability density function (pdf) of the size of the individuals. Different approaches for the estimation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated parameters from real samples. Nonparametric methods include discrete computation of data histograms based on size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity, whilst parametric methods are only useful when the reference distribution have similar shape to the real one. Special attention is given for data standardization. The division of data by the sample geometric mean is proposedas the most suitable standardization method, which shows additional advantages: the same size diversity value is obtained when using original size or log-transformed data, and size measurements with different dimensionality (longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where kis the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation
Resumo:
Background Ancient DNA has revolutionized conservation genetic studies as it allows monitoring of the genetic variability of species through time and predicting the impact of ecosystems" threats on future population dynamics and viability. Meanwhile, the consequences of anthropogenic activities and climate change to island faunas, particularly seabirds, remain largely unknown. In this study, we examined temporal changes in the genetic diversity of a threatened seabird, the Cory"s shearwater (Calonectris borealis). Findings We analysed the mitochondrial DNA control region of ancient bone samples from the late-Holocene retrieved from the Canary archipelago (NE Atlantic) together with modern DNA sequences representative of the entire breeding range of the species. Our results show high levels of ancient genetic diversity in the Canaries comparable to that of the extant population. The temporal haplotype network further revealed rare but recurrent long-distance dispersal between ocean basins. The Bayesian demographic analyses reveal both regional and local population size expansion events, and this is in spite of the demographic decline experienced by the species over the last millennia. Conclusions Our findings suggest that population connectivity of the species has acted as a buffer of genetic losses and illustrate the use of ancient DNA to uncover such cryptic genetic events.
Resumo:
Feeding ecology and geographic location are 2 major factors influencing animal stable isotope signatures, but their relative contributions are poorly understood, which limits the usefulness of stable isotope analysis in the study of animal ecology. To improve our knowledge of the main sources of isotopic variability at sea, we determined δ15N and δ13C signatures in the first primary feather of adult birds from 11 Procellariiform species (n = 609) across 16 northeast Atlantic localities, from Cape Verde (20°N) to Iceland (60°N). Post-breeding areas (where the studied feather is thought to be grown) were determined using light-level geolocation for 6 of the 11 species. Isotopic variability was geographically unstructured within the mid-northeast Atlantic (Macaronesian archipelagos), but trophically structured according to species and regardless of the breeding location, presumably as a result of trophic segregation among species. Indeed, the interspecific isotopic overlap resulting from combining δ15N and δ13C signatures of seabirds was low, which suggests that most species exploited exclusive trophic resources consistently across their geographic range. Species breeding in north temperate regions (Iceland, Scotland and Northern Ireland) showed enriched δ15N compared to the same or similar species breeding in tropical and subtropical regions, suggesting some differences in baseline levels between these regions. The present study illustrates a noticeable trophic segregation of northeast Atlantic Procellariiformes. Our results show that the isotopic approach has limited applicability for the study of animal movements in the northeast Atlantic at a regional scale, but is potentially useful for the study of long-distance migrations between large marine systems
Resumo:
We investigated trophic ecology variation among colonies as well as sex- and age-related differences in the diet of the southern giant petrel Macronectes giganteus, a long-lived seabird that is sexually dimorphic in size. We measured stable isotopes (δ13C, δ15N) in blood samples collected during breeding at Bird Island (South Georgia, Antarctica) in 1998 and at 2 colonies in the Argentinean area of Patagonia in 2000 and 2001. Individuals from South Georgia showed lower δ13C and δ15N values than those in Patagonia, as expected from the more pelagic location and the short length of the Antarctic food web. Males and females showed significant differences in the isotopic signatures at both localities. These differences agree with the sexual differences in diet found in previous studies, which showed that both sexes rely mainly on penguin and seal carrion, but females also feed extensively on marine prey, such as fish, squid and crustaceans. However, males from Patagonia showed significantly higher δ15N and δ13C values than females did, and the reverse trend was observed at South Georgia. This opposite trend is probably related to the different trophic level of carrion between locations: whereas penguins and pinnipeds in Patagonia rely mainly on fish and cephalopods, in South Georgia they rely mainly on krill. Stable isotope values of male and female chicks in Patagonia did not differ; both attained high values, similar to adult males and higher than adult females, suggesting that parents do not provision their single offspring differently in relation to sex; however, they seem to provide offspring with a higher proportion of carrion, probably of higher quality, and more abundant food, than they consume themselves. Stable isotopes at South Georgia were not affected by age of adults. We have provided new information on intraspecific segregation in the diet in a seabird species and have also underlined the importance of considering food web structure when studying intraspecific variability in trophic ecology.
Resumo:
We analysed concentrations of cadmium, lead, mercury and selenium in blood from males and females of the 2 sibling species of giant petrels, the northern Macronectes halli and the southern M. giganteus, breeding sympatrically at Bird Island (South Georgia, Antarctica). Blood samples were collected in 1998 during the incubation period, from 5 November to 10 December. Between species, cadmium and lead concentrations were significantly higher for northern than for southern giant petrels, which probably resulted from northern giant petrels wintering in more polluted areas (mainly on the Patagonian Shelf and Falkland Islands) compared to southern giant petrels (wintering mainly around South Georgia and the South Sandwich Islands). Between sexes, cadmium concentrations were significantly higher for females than for males in both species, corresponding to the more pelagic habits of females compared to the more scavenging habits of males. Lead and cadmium concentrations in circulating blood decreased significantly over the incubation period, suggesting that when breeding at Bird Island, exposure to the source of pollution had ended, and these metals had been cleared from the blood and excreted, or rapidly transferred to other tissues. Association of lead and cadmium with a common source of pollution was further corroborated by a significant positive correlation between the levels of the 2 elements found. Mercury levels were similar between the species, but showed an opposite trend between sexes, with males showing higher levels than females in northern giant petrels, and the opposite was true in southern giant petrels, with no changes throughout incubation. Selenium levels were similar between sexes, but significantly greater for northern than for southern giant petrels. Moreover, there was a significant increase in the selenium levels over the incubation period in northern giant petrels. Age of adult birds did not affect metal concentrations. Coefficients of variation of metal levels were consistently lower for northern than for southern giant petrels, particularly for mercury, suggesting that the former species is more dietary specialised than the latter. Contaminant analyses, when combined with accurate information on seabird movements, obtained through geolocation or satellite tracking, help us to understand geographic variation of pollution in the marine environment.
Resumo:
We studied the mercury contamination of 13 species of seabirds breeding on Bird Island, South Georgia, in 1998. Total mercury concentrations in body feather samples of birds caught at their breeding colonies were determined. Among the species, grey-headed albatross (8933 ng g-1) and southern giant petrel (7774 ng g-1) showed the highest, and gentoo penguin (948 ng g-1) the lowest body feather mercury concentrations. Mercury levels were negatively correlated with the proportion of crustaceans (mainly krill) in the species¹ diets, suggesting that the trophic level is the most important factor in explaining the variation of mercury concentrations in Antarctic seabirds. In 4 species studied for age effects among adult birds (grey-headed and black-browed albatross, northern and southern giant petrel), no age-dependent variation in mercury levels was found. Sex differences were also assessed: female gentoo penguins had lower mercury levels than males, which may be related to the elimination of part of the mercury body burden by females into eggs. In contrast, northern giant petrel males had lower levels than females, which may be related to a higher consumption by males of carrion from Antarctic fur seals. In grey-headed albatrosses, mercury levels were 113% higher than in 1989, when this species was investigated at the same site, indicating a possible increase in mercury pollution of the Southern Ocean during the last decade.
Resumo:
Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives’ decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions
Resumo:
This study aimed to describe patterns of diversity of Baetidae (Ephemeroptera) at the ommunity and population levels within the Montseny Mountain range (North-East Iberian Peninsula). We studied both the distribution of 4 species of baetids in 20 sites among three catchments along the altitudinal gradient (350-1700 masl); and the genetic diversity of the mtDNA cytochrome c oxidase subunit I (cox1) gene of the two common species Baetis alpinus and Baetis rhodani. We found a gradual replacement of the dominant species along the altitudinal gradient. Baetis alpinus inhabited sites at high-altitudes, and this species was replaced by B. rhodani when the altitude decreased. Baetis melanonyx and Alainites muticus attained low abundance at all river sections, and no clear altitudinal trend appeared. Our hypothesis at the population level was that genetic structuring is associated with geographic distance and limited by drainage boundaries among the three studied catchments because of the short-time dispersion of adults. Unexpectedly, analyses of molecular variance (AMOVA) and isolation-bydistance (IBD) showed genetic diversity was unstructured by distance for both species, which may be explained by the relatively short spatial scale studied and small topographic barriers among the three catchments. The Generalized Mixed Yule-Coalescent (GMYC) model showed that B. rhodani had two differentiated genetic lineages that co-occurred in all sites. Overall, diversity of baetids was structured at the community level along the altitudinal gradient, whereas it was unstructured at the population level within the Montseny Mountain range.
Resumo:
This study aimed to describe patterns of diversity of Baetidae (Ephemeroptera) at the ommunity and population levels within the Montseny Mountain range (North-East Iberian Peninsula). We studied both the distribution of 4 species of baetids in 20 sites among three catchments along the altitudinal gradient (350-1700 masl); and the genetic diversity of the mtDNA cytochrome c oxidase subunit I (cox1) gene of the two common species Baetis alpinus and Baetis rhodani. We found a gradual replacement of the dominant species along the altitudinal gradient. Baetis alpinus inhabited sites at high-altitudes, and this species was replaced by B. rhodani when the altitude decreased. Baetis melanonyx and Alainites muticus attained low abundance at all river sections, and no clear altitudinal trend appeared. Our hypothesis at the population level was that genetic structuring is associated with geographic distance and limited by drainage boundaries among the three studied catchments because of the short-time dispersion of adults. Unexpectedly, analyses of molecular variance (AMOVA) and isolation-bydistance (IBD) showed genetic diversity was unstructured by distance for both species, which may be explained by the relatively short spatial scale studied and small topographic barriers among the three catchments. The Generalized Mixed Yule-Coalescent (GMYC) model showed that B. rhodani had two differentiated genetic lineages that co-occurred in all sites. Overall, diversity of baetids was structured at the community level along the altitudinal gradient, whereas it was unstructured at the population level within the Montseny Mountain range.
Resumo:
Understanding how marine predators interact is a scientific challenge. In marine ecosystems, segregation in feeding habits has been largely described as a common mechanism to allow the coexistence of several competing marine predators. However, little is known about the feeding ecology of most species of chondrichthyans, which play a pivotal role in the structure of marine food webs worldwide. In this study, we examined the trophic ecology of 3 relatively abundant chondrichthyans coexisting in the Mediterranean Sea: the blackmouth catshark Galeus melastomus , the velvet belly lanternshark Etmopterus spinax and the rabbit fish Chimaera monstrosa. To examine their trophic ecology and interspecific differences in food habits, we combined the analysis of stomach content and stable isotopes. Our results highlighted a trophic segregation between C. monstrosa and the other 2 species. G. melastomus showed a diet composed mainly of cephalopods, while E. spinax preyed mainly on shrimps and C. monstrosa on crabs. Interspecific differences in the trophic niche were likely due to different feeding capabilities and body size. Each species showed different isotopic niche space and trophic level. Specifically, C. monstrosa showed a higher trophic level than E. spinax and G. melastomus. The high trophic levels of the 3 species highlighted their important role as predators in the marine food web. Our results illustrate the utility of using complementary approaches that provide information about the feeding behaviour at short (stomach content) and long-term scales (stable isotopes), which could allow more efficient monitoring of marine food-web changes in the study area.