85 resultados para The Spherical Bag Approximation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb mixture in the mean-field approximation supposing in one case that the trapping potentials felt by bosons and fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case, assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that can be used to determine the maxima of the Fermionic density. We have numerically checked that the values one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson and fermion numbers, above which the mixture collapses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monopole (L=0) and quadrupole (L=2) strength distributions in normal 3He clusters are calculated within the random-phase approximation. We use a phenomenological, zero-range 3-3He interaction to generate the Hartree-Fock single-particle spectrum and the residual particle-hole interaction. The evolution of the collective modes with the number of atoms in the cluster is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relativistic distorted-wave Born approximation is used to calculate differential and total cross sections for inner shell ionization of neutral atoms by electron and positron impact. The target atom is described within the independent-electron approximation using the self-consistent Dirac-Fock-Slater potential. The distorting potential for the projectile is also set equal to the Dirac-Fock-Slater potential. For electrons, this guarantees orthogonality of all the orbitals involved and simplifies the calculation of exchange T-matrix elements. The interaction between the projectile and the target electrons is assumed to reduce to the instantaneous Coulomb interaction. The adopted numerical algorithm allows the calculation of differential and total cross sections for projectiles with kinetic energies ranging from the ionization threshold up to about ten times this value. Algorithm accuracy and stability are demonstrated by comparing differential cross sections calculated by our code with the distorting potential set to zero with equivalent results generated by a more robust code that uses the conventional plane-wave Born approximation. Sample calculation results are presented for ionization of K- and L-shells of various elements and compared with the available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkur approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from ~100 eV up to ~5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elastic scattering of relativistic electrons and positrons by atoms is considered in the framework of the static field approximation. The scattering field is expressed as a sum of Yukawa terms to allow the use of various approximations. Accurate phase shifts have been computed by combining Bühring¿s power-series method with the WKB and Born approximations. This combined procedure allows the evaluation of differential cross sections for kinetic energies up to several tens of MeV. Numerical results are used to analyze the validity of several approximate methods, namely the first- and second-order Born approximations and the screened Mott formula, which are frequently adopted as the basis of multiple scattering theories and Monte Carlo simulations of electron and positron transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground-state properties of the 3He-4He mixture are investigated by assuming the wave function to be a product of pair correlations. The antisymmetry of the 3He component is taken into account by Fermi-hypernetted-chain techniques and the results are compared with those obtained from the lowest-order Wu-Feenberg expansion and the boson-boson approximation. A little improvement is found in the 3He maximum solubility. A microscopic theory to calculate 3He static properties such as zero-concentration chemical potential and excess-volume parameter is derived and the results are compared with the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a definition of classical differential cross sections for particles with essentially nonplanar orbits, such as spinning ones. We give also a method for its computation. The calculations are carried out explicitly for electromagnetic, gravitational, and short-range scalar interactions up to the linear terms in the slow-motion approximation. The contribution of the spin-spin terms is found to be at best 10-6 times the post-Newtonian ones for the gravitational interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach based on the saddle-point approximation to study the equilibrium interactions between small molecules and macromolecules with a large number of sites. For this case, the application of the Darwin–Fowler method results in very simple expressions for the stoichiometric equilibrium constants and their corresponding free energies in terms of integrals of the binding curve plus a correction term which depends on the first derivatives of the binding curve in the points corresponding to an integer value of the mean occupation number. These expressions are simplified when the number of sites tends to infinity, providing an interpretation of the binding curve in terms of the stoichiometric stability constants. The formalism presented is applied to some simple complexation models, obtaining good values for the free energies involved. When heterogeneous complexation is assumed, simple expressions are obtained to relate the macroscopic description of the binding, given by the stoichiomeric constants, with the microscopic description in terms of the intrinsic stability constants or the affinity spectrum. © 1999 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive a NN*(1440) potential from a nonrelativistic quark-quark interaction and a quark cluster model for the baryons. By making use of the Born-Oppenheimer approximation, we examine quark Pauli correlations in detail. A comparison with the NN potential derived in the same framework is done. This makes it possible to emphasize the role of quark antisymmetry beyond baryon antisymmetry and to discuss the use of phenomenological NN*(1440) baryonic potentials.