52 resultados para Seasonal migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining migratory strategies of seabirds is still a major challenge due to their relative inaccessibility. Small geolocators are improving this knowledge, but not all birds can be tracked. Stable isotope ratios in feathers can help us to understand migration, but we still have insufficient baseline knowledge for linking feather signatures to movements amongst distinct water masses. To understand the migration strategies of kittiwakes Rissa tridactyla and the link between stable isotopes in feathers and the areas in which these were grown, we tracked 6 kittiwakes from Hornøya, Norway, with light level geolocators over 1 yr. Then we analysed the stable isotopes of carbon and nitrogen in their 1st and 7th primary feathers as well as in the 1st, 3rd, 5th, 7th and 10th primaries of 12 birds found freshly dead in the same breeding colony. After breeding, all tracked birds moved east of the Svalbard Archipelago and subsequently migrated to the Labrador Sea. Thereafter, birds showed individual variation in migration strategies: 3 travelled to the NE Atlantic, whereas the others remained in the Labrador Sea until the end of the wintering period. Changes in stable isotope signatures from the 1st to the 10th primary feathers corresponded well to the sequence of movements during migration and the area in which we inferred that each feather was grown. Thus, by combining information on moult patterns and tracking data, we demonstrate that stable isotope analysis of feathers can be used to trace migratory movements of seabirds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In birds, parents adjust their feeding behaviour according to breeding duties, which ultimately may lead to seasonal adjustments in nutritional physiology and hematology over the breeding season. Although avian physiology has been widely investigated in captivity, few studies have integrated individual changes in feeding and physiological ecology throughout the breeding season in wild birds. To study relationships between feeding ecology and nutritional ecophysiology in Cory"s shearwater Calonectris diomedea, we weighed and took blood samples from 28 males and 19 females during the pre-laying, egg-laying, incubation, hatching and chick-rearing periods of the breeding season. In addition, we fitted 6 birds with geolocators to track their foraging movements throughout the reproductive period. Thus, we examined individual changes in (1) nutritional condition (biochemistry metabolites); (2) oxygen carrying capacity (hematology); and (3) feeding areas and foraging effort (stable isotopes and foraging movements). Geolocators revealed a latitudinal shift in main feeding areas towards more southern and more neritic waters throughout the breeding season, which is consistent with the steady increase in δ13C signatures in the blood. Geolocators also showed a decrease in foraging effort from egg-laying to hatching, reflecting the activity decrease associated with incubation duties. Plasma metabolites, body mass and oxygen carrying capacity were associated with temporal changes in nutritional state and foraging effort in relation to recovery after migration, egg formation, fasting shifts during incubation and chick provisioning. This study shows that combining physiological and ecological approaches can help us understand the influence of breeding duties on feeding ecology and nutritional physiology in wild birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite increasing interest in long-distance migration, the wintering areas, migration corridors, and population mix in winter quarters of most pelagic marine predators are unknown. Here, we present the first study tracking migration movements of shearwaters through the non-breeding period. We used geolocators (global location sensing [GLS] units based on ambient light levels) to track 22 Cory's shearwaters (Calonectris diomedea) breeding in three different areas. Most birds wintered in one or more of three relatively small areas, all clearly associated with major coastal upwelling systems of the tropical and south Atlantic. Trans-equatorial movements were dominated by prevailing trade winds and westerlies, while calm, oligotrophic areas were avoided. Breeding populations clearly differed in their preference amongst the three major wintering areas, but showed substantial mixing. This illustrates the exceptional value of GLS, not only for determining and describing the influence of oceanographic features on migration patterns, but also for assessing population mix in winter quarters. This knowledge is essential to understanding the impacts of population-level threats, such as longlining, offshore windfarms, and oil spills on multiple breeding sites, and will be critical in devising conservation policies that guarantee the sustainable exploitation of the oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the literature on housing market areas, different approaches can be found to defining them, for example, using travel-to-work areas and, more recently, making use of migration data. Here we propose a simple exercise to shed light on which approach performs better. Using regional data from Catalonia, Spain, we have computed housing market areas with both commuting data and migration data. In order to decide which procedure shows superior performance, we have looked at uniformity of prices within areas. The main finding is that commuting algorithms present more homogeneous areas in terms of housing prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annual elimination of large numbers of Argentine ant queens near the advance front of an invasion could be a useful tool for weakening the species’ dispersion and, therefore, limiting its establishment in non-invaded areas. However, before carrying out trials to test the effectiveness of this method it would be essential to have sufficient knowledge of the effect of seasonal dynamics acting on the queens’ densities of the species in order to determine the most favourable period of the year to act. We analyzed the seasonal densities and nest dynamics of Argentine ant queens in an invaded Mediterranean natural ecosystem. We observed that the queens’ density varied depending on the season of the year and that this variation was mainly due to the seasonal dynamics of nest aggregations in winter and ant dispersions in summer. The greatest densities per litre of nest soil were observed in winter (December to March, approximately) and the lowest densities were observed in summer ( June to July). This information is essential for improving current knowledge of the Argentine ant’s biology and developing control methods based on the elimination of queens in invaded natural areas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the potential effects of winds on the migratory detours of shearwaters, transequatorial migrations of 3 shearwaters, the Manx Puffinus puffinus, the Cory"s Calonectris diomedea, and the Cape Verde C. edwardsii shearwaters were tracked using geolocators. Concurrent data on the direction and strength of winds were obtained from the NASA SeaWinds scatterometer to calculate daily impedance models reflecting the resistance of sea surface winds to the shearwater movements. From these models we estimated relative wind-mediated costs for the observed synthesis pathway obtained from tracked birds, for the shortest distance pathway and for other simulated alternative pathways for every day of the migration period. We also estimated daily trajectories of the minimum cost pathway and compared distance and relative costs of all pathways. Shearwaters followed 26 to 52% longer pathways than the shortest distance path. In general, estimated wind-mediated costs of both observed synthesis and simulated alternative pathways were strongly dependent on the date of departure. Costs of observed synthesis pathways were about 15% greater than the synthesis pathway with the minimum cost, but, in the Cory"s and the Cape Verde shearwaters, these pathways were on average 15 to 20% shorter in distance, suggesting the extra costs of the observed pathways are compensated by saving about 2 travelling days. In Manx shearwaters, however, the distance of the observed synthesis pathway was 25% longer than that of the lowest cost synthesis pathway, probably because birds avoided shorter but potentially more turbulent pathways. Our results suggest that winds are a major determinant of the migratory routes of seabirds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.